Onset of Convection in an Anisotropic Porous Layer with Vertical Principal Axes

Transport in Porous Media - Tập 108 - Trang 581-593 - 2015
Peder A. Tyvand1, Leiv Storesletten2
1Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
2Department of Mathematics, University of Agder, Kristiansand, Norway

Tóm tắt

A Horton–Rogers–Lapwood problem for onset of thermal convection in a horizontal porous layer with anisotropic permeability and diffusivity is solved analytically. There is full 3D anisotropy, with the restriction that one of each set of principal axes points in the vertical direction. The porous layer has infinite horizontal extent. The upper and lower boundaries are taken to be impermeable and kept at constant temperatures. The critical Rayleigh number for the onset is calculated as a function of the five parameters governing the anisotropy: two permeability ratios, two diffusivity ratios and the angle (in the horizontal plane) between the principal axes of permeability and diffusivity.

Tài liệu tham khảo

Beck, J.L.: Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377–1383 (1972) Castinel, G., Combarnous, M.: Critère d’apparition de la convection naturelle dans une couche poreuse anisotrope. C.R. Acad. Sci. Paris B287, 701–704 (1974) Epherre, J.F.: Critère d’apparition de la convection naturelle dans une couche poreuse anisotrope. Rev. Gén. Therm. 168, 949–950 (1975) Horton, C.W., Rogers, F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–379 (1945) Kvernvold, O., Tyvand, P.A.: Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90, 609–624 (1979) Lapwood, E.R.: Convection of a fluid in a porous medium. Proc. Camb. Philos. Soc. 44, 508–521 (1948) Mahidjiba, A., Robillard, L., Vasseur, P., Mamou, M.: Onset of convection in an anisotropic porous layer of finite lateral extent. Int. Commun. Heat Mass Transf. 27, 333–342 (2000) McKibbin, R.: Thermal convection in a porous layer: effects of anisotropy and surface boundary conditions. Transp. Porous Med. 1, 271–292 (1986) Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013) Rosenberg, N.D., Spera, F.J.: Role of anisotropy and/or layered permeability in hydrothermal convection. Geophys. Res. Lett. 17, 235–238 (1990) Storesletten, L.: Natural convection in a horizontal porous layer with anisotropic thermal diffusivity. Transp. Porous Media 12, 19–29 (1993) Storesletten, L.: Effects of anisotropy on convective flow through porous media. In: Ingham, D.B., Pop, I. (eds.) Transp. Phenom. Porous Media, pp. 261–283. Pergamon, Oxford (1998) Storesletten, L.: Effects of anisotropy on convection in horizontal and inclined porous layers. In: Ingham, D.B., et al. (eds.) Emerging Technologies and Techniques in Porous Media, pp. 285–306. Kluwer, Dordrecht (2004) Tyvand, P.A., Storesletten, L.: Onset of convection in an anisotropic porous medium with oblique principal axes. J. Fluid Mech. 226, 371–382 (1991)