Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction

Energy and Environmental Science - Tập 11 Số 12 - Trang 3375-3379
Jing Wang1,2,3,4,5, Wei Liu6,2,7,4, Gan Luo6,8,9,10,11, Zhijun Li1,2,3,4,5, Chao Zhao1,2,3,4,5, Haoran Zhang1,2,3,4,5, Mengzhao Zhu1,2,3,4,5, Qian Xu6,2,7,4, Xiaoqian Wang1,2,3,4,5, Changming Zhao1,2,3,4,5, Yunteng Qu1,2,3,4,5, Zhengkun Yang1,2,3,4,5, Tao Yao6,2,7,4, Yafei Li6,8,9,10,11, Yue Lin6,12,13,4, Yuen Wu1,2,3,4,5, Yadong Li14,6,15,16
1Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei 230026, China
2Hefei 230026
3Hefei National Laboratory for Physical Sciences at the Microscale
4University of Science and Technology of China
5iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
6China
7National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
8Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
9Nanjing
10Nanjing Normal University
11School of Chemistry and Materials Science
12Hefei
13Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
14Beijing 100084
15Department of Chemistry, Tsinghua University, Beijing 100084, China
16 Tsinghua University

Tóm tắt

Herein, we construct a novel electrocatalyst with Fe–Co dual sites embedded in N-doped carbon nanotubes ((Fe,Co)/CNT), which exhibits inimitable advantages towards the oxygen reduction reaction.

Từ khóa


Tài liệu tham khảo

Li, 2014, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C

Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010

Gewirth, 2010, Inorg. Chem., 49, 3557, 10.1021/ic9022486

Debe, 2012, Nature, 486, 43, 10.1038/nature11115

Bing, 2010, Chem. Soc. Rev., 39, 2184, 10.1039/b912552c

Wu, 2013, Acc. Chem. Res., 46, 1848, 10.1021/ar300359w

Shao, 2016, Chem. Rev., 116, 3594, 10.1021/acs.chemrev.5b00462

Gong, 2015, ACS Catal., 5, 920, 10.1021/cs501632y

Qu, 2016, Nano Energy, 19, 373, 10.1016/j.nanoen.2015.11.027

Wang, 2018, Adv. Mater., 30, 1703

Wu, 2013, Acc. Chem. Res., 46, 1878, 10.1021/ar400011z

Li, 2014, Adv. Energy Mater., 4, 1301415, 10.1002/aenm.201301415

Proietti, 2011, Nat. Commun., 2, 416, 10.1038/ncomms1427

Yin, 2016, Angew. Chem., Int. Ed., 55, 10800, 10.1002/anie.201604802

Chen, 2017, Angew. Chem., Int. Ed., 56, 6937, 10.1002/anie.201702473

Ren, 2017, ACS Catal., 7, 6485, 10.1021/acscatal.7b02340

Wang, 2017, J. Am. Chem. Soc., 139, 17281, 10.1021/jacs.7b10385

Wu, 2011, Science, 332, 443, 10.1126/science.1200832

Sahraie, 2015, Nat. Commun., 6, 8618, 10.1038/ncomms9618

Medford, 2015, J. Catal., 328, 36, 10.1016/j.jcat.2014.12.033

Kulkarni, 2018, Chem. Rev., 118, 2302, 10.1021/acs.chemrev.7b00488

Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Aijaz, 2012, J. Am. Chem. Soc., 134, 13926, 10.1021/ja3043905

Chen, 2017, Angew. Chem., Int. Ed., 56, 610, 10.1002/anie.201610119

Zheng, 2017, J. Am. Chem. Soc., 139, 3336, 10.1021/jacs.6b13100