Dynamic clustering of residential electricity consumption time series data based on Hausdorff distance
Tài liệu tham khảo
2015
EC, 2011
Han, 2006
2007
Liao, 2005, Clustering of time series data – a survey, Pattern Recognit., 38, 1857, 10.1016/j.patcog.2005.01.025
MacQueen, 1967, Some methods for classification and analysis of multivariate observations, 281
Bezdek, 1973
Izakian, 2013, Clustering spatiotemporal data: an augmented fuzzy c-means, IEEE Trans. Fuzzy Syst., 21, 855, 10.1109/TFUZZ.2012.2233479
Izakian, 2014, Agreement-based fuzzy c-means for clustering data with blocks of features, Neurocomputing, 127, 266, 10.1016/j.neucom.2013.08.006
Kennedy, 1995, Particle swarm optimization, 4, 1942
Benítez, 2014, Dynamic clustering segmentation applied to load profiles of energy consumption from Spanish customers, Int. J. Electr. Power Energy Syst., 55, 437, 10.1016/j.ijepes.2013.09.022
Díez, 2003
Chicco, 2012, Overview and performance assessment of the clustering methods for electrical load pattern grouping, Energy, 42, 68, 10.1016/j.energy.2011.12.031
Halkidi, 2001, On clustering validation techniques, J. Intell. Inf. Syst., 17, 107, 10.1023/A:1012801612483
Davies, 1979, Cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 1, 95
Xie, 1991, A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 13, 841, 10.1109/34.85677
Hausdorff, 1914
Benítez Sánchez, 2009, Clients segmentation according to their domestic energy consumption by the use of self-organizing maps, 1