A Sensor for Trace H2O Detection in D2O

Elsevier BV - Tập 2 Số 4 - Trang 579-589 - 2017
Samuel G. Samuel G., Ana J. Ana J., Matthew D. Matthew D., Alexander Alexander, Vincent M. Vincent M., Jonathan L. Jonathan L., Bradley J. Bradley J., Simon M. Simon M.

Tài liệu tham khảo

Grimsdale, 2009, Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices, Chem. Rev., 109, 897, 10.1021/cr000013v Kesama, 2016, Morphological and optoelectronic characteristics of double and triple lanthanide ion-doped DNA thin films, ACS Appl. Mater. Inter., 8, 14109, 10.1021/acsami.6b02880 Binnemans, 2009, Lanthanide-based luminescent hybrid materials, Chem. Rev., 109, 4283, 10.1021/cr8003983 Eliseeva, 2010, Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev., 39, 189, 10.1039/B905604C Carlos, 2009, Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future, Adv. Mater., 21, 509, 10.1002/adma.200801635 Gunnlaugsson, 2005, Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures, Chem. Commun., 3114, 10.1039/b418196d Plush, 2008, Solution studies of trimetallic lanthanide luminescent anion sensors: towards ratiometric sensing using an internal reference channel, Dalton Trans., 3801, 10.1039/b805610b Plush, 2007, Luminescent sensing of dicarboxylates in water by a bismacrocyclic dinuclear Eu(III) conjugate, Org. Lett., 9, 1919, 10.1021/ol070339r Waggoner, 2015, Metal-organic frameworks as chemical sensors, 192 Tobin, 2015, Towards multifunctional lanthanide-based metal-organic frameworks, Chem. Commun., 51, 13313, 10.1039/C5CC04928H Zhou, 2013, Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal–organic frameworks, Inorg. Chem., 52, 8082, 10.1021/ic400770j Zhao, 2015, Highly thermostable lanthanide metal–organic frameworks exhibiting unique selectivity for nitro explosives, RSC Adv., 5, 93, 10.1039/C4RA13773F Harbuzaru, 2009, A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework, Angew. Chem. Int. Ed., 48, 6476, 10.1002/anie.200902045 Liu, 2015, Mixed-lanthanoid metal–organic framework for ratiometric cryogenic temperature sensing, Inorg. Chem., 54, 11323, 10.1021/acs.inorgchem.5b01924 Hao, 2015, Recyclable lanthanide-functionalized MOF hybrids to determine hippuric acid in urine as a biological index of toluene exposure, Chem. Commun., 51, 14509, 10.1039/C5CC05219J Waggoner, 2014, Magnetism of linear [Ln3]9+ oxo-bridged clusters (Ln = Pr, Nd) supported inside a [R3PR′] phosphonium coordination material, Inorg. Chem., 53, 12674, 10.1021/ic5023642 Ibarra, 2012, Gas sorption and luminescence properties of a terbium(iii)-phosphine oxide coordination material with two-dimensional pore topology, Dalton Trans., 41, 8003, 10.1039/c2dt30138e Ibarra, 2013, Molecular sensing and discrimination by a luminescent terbium–phosphine oxide coordination material, Chem. Commun., 49, 7156, 10.1039/c3cc44575e Mitchell, 1951, Karl Fischer reagent titration, Anal. Chem., 23, 1069, 10.1021/ac60056a005 Slizard, L. 1958. Heavy water moderated neutronic reactor. US Patent US2832733A, filed April 23, 1946, and published April 29, 1958. Wiberg, 1955, The deuterium isotope effect, Chem. Rev., 55, 713, 10.1021/cr50004a004 Meijer, 1986, Sensitive quantum state selective detection of H2O and D2O by (2+1)-resonance enhanced multiphoton ionization, J. Chem. Phys., 85, 6914, 10.1063/1.451845 Creasy, W.R., McGarvey, D.J., Rice, J.S., O’Connor, R., Durst, H.D. (2003). Study of detection limits and quantitation accuracy using 300 MHz NMR. ADA482893. www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA482893. Armani, 2003, Ultra-high-Q toroid microcavity on a chip, Nature, 421, 925, 10.1038/nature01371 Armani, 2006, Heavy water detection using ultra-high-Q microcavities, Opt. Lett., 31, 1896, 10.1364/OL.31.001896 Atkins, 2010 Côté, 2007, Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks, J. Am. Chem. Soc., 129, 12914, 10.1021/ja0751781 Zhang, 2014, Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds, J. Am. Chem. Soc., 136, 7241, 10.1021/ja502643p Humphrey, 2009, Metal–organophosphine and metal–organophosphonium frameworks with layered honeycomb-like structures, Dalton Trans., 2298, 10.1039/b820038f Feng, 2013, Hybrid materials based on lanthanide organic complexes: a review, Chem. Soc. Rev., 42, 387, 10.1039/C2CS35069F Bünzli, 2010, Basics of lanthanide photophysics, vol. 7, 1 Fiedler, 2007, Synthesis, structural and spectroscopic studies on the lanthanoid p-aminobenzoates and derived optically functional polyurethane composites, Eur. J. Inorg. Chem., 2007, 291, 10.1002/ejic.200600797 Bünzli, 2005, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev., 34, 1048, 10.1039/b406082m Lin, 2010, A series of lanthanide metal-organic frameworks based on biphenyl-3,4′,5-tricarboxylate: syntheses, structures, luminescence and magnetic properties, Eur. J. Inorg. Chem., 2010, 3842, 10.1002/ejic.201000353 Lill, 2007, Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework, Inorg. Chem., 46, 3960, 10.1021/ic062019u Sato, 2013, Self-accelerating CO sorption in a soft nanoporous crystal, Science, 343, 167, 10.1126/science.1246423 Cui, 2012, A luminescent mixed-lanthanide metal–organic framework thermometer, J. Am. Chem. Soc., 134, 3979, 10.1021/ja2108036 Laulicht, 1986, Direct evidence for excitation transfer from the 5D4 manifold of Tb3 to the 5D1 manifold of Eu3 in Tb0.66Eu0.33P5O14, J. Lumin., 34, 287, 10.1016/0022-2313(86)90072-4