KiSSAM: efficient simulation of melt pool dynamics during PBF using GPUs
Progress in Additive Manufacturing - Trang 1-18 - 2024
Tóm tắt
The computer simulation of powder bed fusion (PBF) with an electron beam (EB) source at the mesoscale is relevant since the simulation output can be used to estimate solidified material properties and predict possible defects. A high-fidelity simulation with high resolution is computationally heavy, which is why 3D simulations of multilayered samples are rarely used in engineering tasks. We developed the simulation package for additive manufacturing (KiSSAM) that implements the known mathematical models in 3D on a GPU with high performance. KiSSAM includes an implementation of lattice Boltzmann method (LBM) optimized for a GPU; a dynamic mesh for the melt pool; an adaptive mesh for the heat solver; a GPU-powered ray tracer and Monte-Carlo scattering solver for beam absorption, and a high-performance DEM solver for powder particle deposition. All aspects of PBF are implemented with optimized algorithms, so the results of the simulation can be obtained in a few hours. In this paper, we demonstrate the applications of the software for PBF-EB simulation tasks.
Tài liệu tham khảo
Kasprowicz M, Pawlak A, Jurkowski P, Kurzynowski T (2023) Ways to increase the productivity of L-PBF processes. Arch Civ Mech Eng 23(3):211
Flores I, Kretzschmar N, Azman AH, Chekurov S, Pedersen DB, Chaudhuri A (2020) Implications of lattice structures on economics and productivity of metal powder bed fusion. Addit Manuf 31:100947
Mostafaei A, Zhao C, He Y, Reza Ghiaasiaan S, Shi B, Shao S, Shamsaei N, Wu Z, Kouraytem N, Sun T, Pauza J, Gordon JV, Webler B, Parab ND, Asherloo M, Guo Q, Chen L, Rollett AD (2022) Defects and anomalies in powder bed fusion metal additive manufacturing. Curr Opin Solid State Mater Sci 26(2):100974. https://doi.org/10.1016/j.cossms.2021.100974
Shuai C, Xue L, Gao C, Yang Y, Peng S, Zhang Y (2018) Selective laser melting of Zn–Ag alloys for bone repair: microstructure, mechanical properties and degradation behaviour. Virtual Phys Prototyp 13(3):146–154
Chernyshikhin SV, Pelevin IA, Karimi F, Shishkovsky IV (2022) The study on resolution factors of LPBF technology for manufacturing superelastic NiTi endodontic files. Materials 15(19):6556
Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45
Markl M, Körner C (2016) Multiscale modeling of powder bed-based additive manufacturing. Ann Rev Mater Res 46:93–123. https://doi.org/10.1146/annurev-matsci-070115-032158
Soundararajan B, Sofia D, Barletta D, Poletto M (2021) Review on modeling techniques for powder bed fusion processes based on physical principles. Addit Manuf 47:102336. https://doi.org/10.1016/j.addma.2021.102336
Cook PS, Murphy AB (2020) Simulation of melt pool behaviour during additive manufacturing: underlying physics and progress. Addit Manuf 31:100909. https://doi.org/10.1016/j.addma.2019.100909
Gürtler F-J, Karg M, Leitz K-H, Schmidt M (2013) Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method. Phys Procedia 41:881–886. https://doi.org/10.1016/j.phpro.2013.03.162 (Lasers in Manufacturing (LiM 2013))
Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490
Megahed M, Mindt H-W, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integr Mater Manuf Innov 5:61–93. https://doi.org/10.1186/s40192-016-0047-2
Karayagiz K, Elwany A, Tapia G, Franco B, Johnson L, Ma J, Karaman I, Arróyave R (2019) Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti–6Al–4V. IISE Trans 51(2):136–152. https://doi.org/10.1080/24725854.2018.1461964
Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016
Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67(2):318–330
Attar E, Körner C (2011) Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition. Int J Heat Fluid Flow 32(1):156–163. https://doi.org/10.1016/j.ijheatfluidflow.2010.09.006
Markl M, Körner C (2015) Free surface Neumann boundary condition for the advection–diffusion lattice Boltzmann method. J Comput Phys 301:230–246. https://doi.org/10.1016/j.jcp.2015.08.033
Klassen A, Scharowsky T, Körner C (2014) Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J Phys D Appl Phys 47(27):275303
Markl M, Ammer R, Ljungblad U, Rüde U, Körner C (2013) Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment. Procedia Comput Sci 18:2127–2136
Rausch AM, Küng VE, Pobel C, Markl M, Körner C (2017) Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density. Materials. https://doi.org/10.3390/ma10101117
Juechter V, Scharowsky T, Singer R, Körner C (2014) Processing window and evaporation phenomena for Ti–6Al–4V produced by selective electron beam melting. Acta Mater 76:252–258
Zakirov A, Belousov S, Bogdanova M, Korneev B, Stepanov A, Perepelkina A, Levchenko V, Meshkov A, Potapkin B (2020) Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit Manuf 35:101236. https://doi.org/10.1016/j.addma.2020.101236
Nakapkin DS, Zakirov AV, Belousov SA, Bogdanova MV, Korneev BA, Stepanov AE, Perepelkina AY, Levchenko VD, Potapkin BV, Meshkov A ( 2019) Finding optimal parameter ranges for laser powder bed fusion with predictive modeling at mesoscale. In: Sim-AM 2019: II international conference on simulation for additive manufacturing, CIMNE. pp 297– 308
Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method, vol 10, no 978–3. Springer International Publishing. pp 4–15
Wittmann M, Zeiser T, Hager G, Wellein G (2013) Comparison of different propagation steps for lattice Boltzmann methods. Comput Math Appl 65(6):924–935
Nguyen A, Satish N, Chhugani J, Kim C, Dubey P (2010) 3.5-D blocking optimization for stencil computations on modern CPUs and GPUs. In: SC’10: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis, IEEE. pp 1– 13
Wellein G, Hager G, Zeiser T, Wittmann M, Fehske H ( 2009) Efficient temporal blocking for stencil computations by multicore-aware wavefront parallelization. In: 2009 33rd Annual IEEE international computer software and applications conference, vol 1. IEEE, pp 579– 586
KiSSAM Simulation Software for Additive Manufacturing. www.kissam.cloud. Accessed May 2023
Li C, Fu CH, Guo YB, Fang FZ (2015) Fast prediction and validation of part distortion in selective laser melting. Procedia Manuf 1:355–365. https://doi.org/10.1016/j.promfg.2015.09.042 (43rd North American Manufacturing Research Conference, NAMRC 43, 8–12 (June2015) UNC Charlotte. North Carolina, United States)
Zhang XX, Wang D, Xiao BL, Andrä H, Gan WM, Hofmann M, Ma ZY (2017) Enhanced multiscale modeling of macroscopic and microscopic residual stresses evolution during multi-thermo-mechanical processes. Mater Des 115:364–378. https://doi.org/10.1016/j.matdes.2016.11.070
Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80. https://doi.org/10.1016/j.addma.2017.05.001
Zeng K, Pal D, Gong HJ, Patil N, Stucker B (2015) Comparison of 3dsim thermal modelling of selective laser melting using new dynamic meshing method to ANSYS. Mater Sci Technol 31(8):945–956. https://doi.org/10.1179/1743284714Y.0000000703
Thurey N (2007) Physically based animation of free surface flows with the lattice Boltzmann method. PhD thesis
Museth K (2013) VDB: high-resolution sparse volumes with dynamic topology. ACM Trans Graph (TOG) 32(3):1–22
Thies M (2005) Lattice Boltzmann modeling with free surfaces applied to in-situ gas generated foam formation. PhD thesis, University of Erlangen-Nuremberg, Erlangen
Bogner S (2017) Direct numerical simulation of liquid–gas–solid flows based on the lattice Boltzmann method. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
Marangoni C (1865) Sull’espansione delle Goccie D’un Liquido Galleggianti Sulla Superfice di Altro Liquido. Fratelli Fusi, Pavia, Italy
Dantzig JA, Rappaz M (2016) Solidification: revised & expanded. EPFL Press, Lausanne
Chatterjee D, Chakraborty S (2006) A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Phys Lett A 351(4–5):359–367
Sukop MC, Thorne DT (2010) Lattice Boltzmann modeling: an introduction for geoscientists and engineers, 1st edn. Springer, New York
Knight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17(5):519–523
Klassen A (2018) Simulation of evaporation phenomena in selective electron beam melting. FAU University Press, Erlangen
Joy DC (1991) An introduction to Monte Carlo simulations. Scan Microsc 5(2):4
Murata K, Matsukawa T, Shimizu R (1971) Monte Carlo calculations on electron scattering in a solid target. Jpn J Appl Phys 10(6):678
Jones BD, Williams JR (2017) Fast computation of accurate sphere-cube intersection volume. Eng Comput 34(4):1204–1216
Joy D, Luo S (1989) An empirical stopping power relationship for low-energy electrons. Scanning 11(4):176–180
NVIDIA Corporation (2023) NVIDIA CUDA C programming guide. Version 12.2. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for multicore architectures. Commun ACM 52(4):65–76
Avila LS, Kitware I (2010) The VTK user’s guide. Kitware, New York. https://books.google.ru/books?id=6IxSewAACAAJ
Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev 159(1):98
Govender N, Wilke DN, Kok S (2015) Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method. Appl Math Comput 267:810–829
Govender N, Wilke DN, Kok S (2016) Blaze-DEMGPU: modular high performance DEM framework for the GPU architecture. SoftwareX 5:62–66
Korneev B, Zakirov A, Bogdanova M, Belousov S, Perepelkina A, Iskandarova I, Potapkin B (2023) A numerical study of powder wetting influence on the morphology of laser powder bed fusion manufactured thin walls. Addit Manuf 74:103705. https://doi.org/10.1016/j.addma.2023.103705
Schroeder WJ, Zarge JA, Lorensen WE (1992) Decimation of triangle meshes. In: Proceedings of the 19th annual conference on computer graphics and interactive techniques, pp 65– 70
Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214(11):2627–2636
Megahed M, Mindt H-W, Shula B, Peralta A, Neumann J (2016) Powder bed models—numerical assessment of as-built. Quality. https://doi.org/10.2514/6.2016-1657
Lee Y, Zhang W (2015) Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: 2015 International solid freeform fabrication symposium. University of Texas at Austin
Jamshidinia M, Kong F, Kovacevic R (2013) The coupled CFD-FEM model of electron beam melting® (EBM). https://doi.org/10.13140/2.1.4136.2245
Markl M (2015) Numerical modeling and simulation of selective electron beam melting using a coupled lattice Boltzmann and discrete element method. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
Zöller C, Adams NA, Adami S (2023) Numerical investigation of balling defects in laser-based powder bed fusion of metals with Inconel 718. Addit Manuf 73:103658. https://doi.org/10.1016/j.addma.2023.103658
Afrasiabi M, Lüthi C, Bambach M, Wegener K (2021) Multi-resolution SPH simulation of a laser powder bed fusion additive manufacturing process. Appl Sci 11(7):2962
Blender Online Community (2018) Blender—a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.org. Accessed Mar 2023
Zhang B, Liu S, Shin YC (2019) In-process monitoring of porosity during laser additive manufacturing process. Addit Manuf 28:497–505. https://doi.org/10.1016/j.addma.2019.05.030
Renner J, Breuning C, Markl M, Körner C (2022) Surface topographies from electron optical images in electron beam powder bed fusion for process monitoring and control. Addit Manuf 60:103172. https://doi.org/10.1016/j.addma.2022.103172
Taherkhani K, Sheydaeian E, Eischer C, Otto M, Toyserkani E (2021) Development of a defect-detection platform using photodiode signals collected from the melt pool of laser powder-bed fusion. Addit Manuf 46:102152. https://doi.org/10.1016/j.addma.2021.102152
Markl M, Ammer R, Rüde U, Körner C (2015) Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. Int J Adv Manuf Technol 78:239–247
Breuning C, Markl M, Körner C (2023) A return time compensation scheme for complex geometries in electron beam powder bed fusion. Addit Manuf 76:103767
Criales LE, Arısoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625. Addit Manuf 13:14–36
Wu C, Zafar MQ, Zhao H, Wang Y, Schöler C, Heinigk C, Nießen M, Schulz W (2021) Multi-physics modeling of side roughness generation mechanisms in powder bed fusion. Addit Manuf 47:102274
Su X, Yang Y, Xiao D, Luo Z (2013) An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol 64(9):1231–1238
Schwalbach EJ, Chapman MG, Groeber MA (2021) AFRL additive manufacturing modeling series: challenge 2, microscale process-to-structure data description. Integr Mater Manuf Innov 10(3):319–337
Fotovvati B, Chou K (2022) Multi-layer thermo-fluid modeling of powder bed fusion (PBF) process. J Manuf Process 83:203–211
Laskowski R, Ahluwalia R, Hock GTW, Ying CS, Sun C-N, Wang P, Cheh DTC, Sharon NML, Vastola G, Zhang Y-W (2022) Concurrent modeling of porosity and microstructure in multilayer three-dimensional simulations of powder-bed fusion additive manufacturing of inconel 718. Addit Manuf 60:103266
Zakirov A, Levchenko V, Perepelkina A (2019) LRnLA lattice Boltzmann method: a performance comparison of implementations on GPU and CPU. Commun Comput Inf Sci 1063:139–151. https://doi.org/10.1007/978-3-030-28163-2_10 (Parallel Computational Technologies. PCT 2019)