Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding

Springer Science and Business Media LLC - Tập 5 - Trang 1078-1089 - 2022
Kun Liu1, Wei Liu1, Wei Li1, Yaxin Duan1, Keyu Zhou1, Shu Zhang1, Shuzhen Ni1,2, Ting Xu1,2, Haishun Du3, Chuanling Si1
1Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
2Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
3Department of Chemical Engineering, Auburn University, Auburn, USA

Tóm tắt

Recently, the rapid popularization of modern communication technologies represented by 5G will inevitably aggravate the deterioration of the electromagnetic environment. Electromagnetic interference (EMI) and electromagnetic radiation have more and more serious impacts on human production and life, and EMI shielding materials have emerged as the times require. Herein, we reported a cellulose nanofibril/silver nanowire (CNF/AgNW) nanopaper, manufactured through a step-by-step (SbS) self-assembly process, which has a unique layered structure and improved two-sidedness. The results showed that the obtained AgNWs have an ultra-high aspect ratio (up to 2857), which enabled them to form conductive paths in nanopaper at low addition levels (0.5 wt.%). When the AgNW content was 5.0 wt.%, the obtained nanopaper with a thickness of ~ 50 μm exhibited an excellent tensile strength of ~ 98.6 MPa and a high conductivity of ~ 1673 S/cm. The unique layered structure of CNF/AgNW nanopaper and the excellent synergistic interaction between CNF and AgNWs enabled the optimized CNF/AgNW nanopaper to exhibit a high EMI shielding effectiveness (SE) of up to 67.27 dB in the X band. Therefore, this strong and highly conductive CNF/AgNW nanopaper is expected to broaden new application areas including smart clothing, wearable electronic devices, and other emerging applications. A strong and highly conductivity cellulose nanofibrils/silver nanowires (CNF/AgNWs) nanopaper has been manufactured through the step-by-step self-assembly process. Abundant conductive network and special interlayer structure make the CNF/AgNWs nanopaper holds high EMI shielding performance at a low thickness.

Tài liệu tham khảo

Yun T, Kim H, Iqbal A, Cho YS, Lee GS, Kim M-K, Kim SJ, Kim D, Gogotsi Y, Kim SO, Koo CM (2020) Electromagnetic shielding of monolayer MXene assemblies. Adv Mater 32(9):1906769. https://doi.org/10.1002/adma.201906769 Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13(20):5373. https://doi.org/10.3390/en13205373 Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14(9):2511. https://doi.org/10.3390/en14092511 Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13(20):4622. https://doi.org/10.3390/ma13204622 Tan L, Wei C, Zhang Y, An Y, Xiong S, Feng J (2022) Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J 431:134277. https://doi.org/10.1016/j.cej.2021.134277 Liu S, Du H, Liu K, Ma M, Kwon Y-E, Si C, Ji X, Choi S-E, Zhang X (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4(4):1367–1383. https://doi.org/10.1007/s42114-021-00344-8 Xiong R, Xu RX, Huang C, Smedt SD, Braeckmans K (2021) Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 50(9):5746–5776. https://doi.org/10.1039/C9CS00839J Zhang Y, Cheng W, Tian W, Lu J, Song L, Liew KM, Wang B, Hu Y (2020) Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl Mater Interfaces 12(5):6371–6382. https://doi.org/10.1021/acsami.9b18750 Zhou Z, Liu J, Zhang X, Tian D, Zhan Z, Lu C (2019) Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv Mater Interfaces 6(6):1802040. https://doi.org/10.1002/admi.201802040 Asmatulu R, Bollavaram PK, Patlolla VR, Alarifi IM, Khan WS (2020) Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv Compos Hybrid Mater 3(1):66–83. https://doi.org/10.1007/s42114-020-00135-7 Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4(2):274–285. https://doi.org/10.1007/s42114-021-00221-4 Wang Y, Wang P, Du Z, Liu C, Shen C, Wang Y (2021) Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00320-2 Liu R, Miao M, Li Y, Zhang J, Cao S, Feng X (2018) Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl Mater Interfaces 10(51):44787–44795. https://doi.org/10.1021/acsami.8b18347 Zeng Z, Wang C, Siqueira G, Han D, Huch A, Abdolhosseinzadeh S, Heier J, Nüesch F, Zhang C, Nyström G (2020) Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv Sci 7(15):2000979. https://doi.org/10.1002/advs.202000979 Ma C, Cao W, Zhang W, Ma M, Sun W, Zhang J, Chen F (2021) Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem Eng J 403:126438. https://doi.org/10.1016/j.cej.2020.126438 Choi HY, Lee T-W, Lee S-E, Lim J, Jeong YG (2017) Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements. Compos Sci Technol 150:45–53. https://doi.org/10.1016/j.compscitech.2017.07.008 Chen Y, Pang L, Li Y, Luo H, Duan G, Mei C, Xu W, Zhou W, Liu K, Jiang S (2020) Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos Part Appl Sci Manuf 135:105960. https://doi.org/10.1016/j.compositesa.2020.105960 Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C, Shen C, Liu X (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4:505–513. https://doi.org/10.1007/s42114-021-00224-1 Huang K, Liu J, Lin S, Wu Y, Chen E, He Z, Lei M (2021) Flexible silver nanowire dry electrodes for long-term electrocardiographic monitoring. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00322-0 Yang S, Yan D, Li Y, Lei J, Li Z (2021) Flexible poly(vinylidene fluoride)-MXene/silver nanowire electromagnetic shielding films with joule heating performance. Ind Eng Chem Res 60(27):9824–9832. https://doi.org/10.1021/acs.iecr.1c01632 Yin R, Yang S, Li Q, Zhang S, Liu H, Han J, Liu C, Shen C (2020) Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci Bull 65(11):899–908. https://doi.org/10.1016/j.scib.2020.02.020 Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2021) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00317-x Li X, Lu X, Nie S, Liang M, Yu Z, Duan B, Yang J, Xu R, Lu L, Si C (2020) Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Ind Crops Prod 145:112154. https://doi.org/10.1016/j.indcrop.2020.112154 Liu R, Dai L, Xu C, Wang K, Zheng C, Si C (2020) Lignin-based micro- and nanomaterials and their composites in biomedical applications. Chemsuschem 13(17):4266–4283. https://doi.org/10.1002/cssc.202000783 Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C (2020) Biomass fractionation and lignin fractionation towards lignin valorization. Chemsuschem 13(17):4284–4295. https://doi.org/10.1002/cssc.202001491 An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crops Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009 Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T-S, Zhang X, Si C (2021) Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl Mater Interfaces 13(27):32115–32125. https://doi.org/10.1021/acsami.1c06647 Du H, Zhang M, Liu K, Parit M, Jiang Z, Zhang X, Li B, Si C (2022) Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994. https://doi.org/10.1016/j.cej.2021.131994 Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23(24):9723–9746. https://doi.org/10.1039/D1GC02841C Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425 Sun L, Zhang X, Liu H, Liu K, Du H, Kumar A, Sharma G, Si C (2021) Recent advances in hydrophobic modification of nanocellulose. Curr Org Chem 25(3):417–436. https://doi.org/10.2174/1385272824999201210191041 Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(48):2101368. https://doi.org/10.1002/adma.202101368 Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2 Chen S, Wang G, Sui W, Parvez AM, Dai L, Si C (2020) Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind Crops Prod 145:112164. https://doi.org/10.1016/j.indcrop.2020.112164 Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crops Prod 130:184–197. https://doi.org/10.1016/j.indcrop.2018.12.082 Liu W, Du H, Liu K, Liu H, Xie H, Si C, Pang B, Zhang X (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr Polym 267:118220. https://doi.org/10.1016/j.carbpol.2021.118220 Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817 Liu H, Liu K, Han X, Xie H, Si C, Liu W, Bae Y (2020) Cellulose nanofibrils-based hydrogels for biomedical applications: progresses and challenges. Curr Med Chem 27(28):4622–4646. https://doi.org/10.2174/0929867327666200303102859 Wang H, Du H, Liu K, Liu H, Xu T, Zhang S, Chen X, Zhang R, Li H, Xie H, Zhang X, Si C (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr Polym 266(15):118107. https://doi.org/10.1016/j.carbpol.2021.118107 Liu W, Du H, Zheng T, Si C (2021) Recent insights on biomedical applications of bacterial cellulose based composite hydrogels. Curr Med Chem. https://doi.org/10.2174/0929867328666210412124444 Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8(20):7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125 Dai L, Cao Q, Wang K, Han S, Si C, Liu D, Liu Y (2020) High efficient recovery of L-lactide with lignin-based filler by thermal degradation. Ind Crops Prod 143:111954. https://doi.org/10.1016/j.indcrop.2019.111954 Xu R, Si C, Kong F, Li X (2020) Synthesis of γ-valerolactone and its application in biomass conversion. J For Eng 5(2):20–28. https://doi.org/10.13360/j.issn.2096-1359.201904004 Yang J, Si C, Liu K, Liu H, Li X and Liang M (2020) Production of levulinic acid from lignocellulosic biomass and application. J For Eng 5(5): 21–27. https://doi.org/10.13360/j.issn.2096-1359.201905013 Xie Z, Tian Z, Liu S, Ma H, Ji X, Si C (2022) Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00400-3 Xu R, Du H, Liu C, Liu H, Wu M, Zhang X, Si C, Li B (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834. https://doi.org/10.1016/j.jclepro.2021.127834 Wang Y, Ji X, Liu S, Tian Z, Si C, Wang R, Yang G, Wang D (2022) Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00395-x Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T-S, Zhang X, Si C (2021) Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydr Polym 270:118372. https://doi.org/10.1016/j.carbpol.2021.118372 Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2021) Cellulose nanomaterials for oil exploration applications. Polym Rev 1–41. https://doi.org/10.1080/15583724.2021.2007121 Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Li H, Xie H, Zhang X, Ma M, Si C (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740 Li L, Wu Z, Liang J, Yu L (2020) Application of deep eutectic solvents in lignocellulosic biomass processing. J For Eng 5(4):20–28. https://doi.org/10.13360/j.issn.2096-1359.201907035 Tong C, Chen N, Ru J, Shan P, Liu H, Du C (2020) The influence of PFI pretreatment on physicochemical characteristics of cationic nanofibrillated cellulose prepared from once-dried and never-dried bamboo pulps. J For Eng 5(2):82–89. https://doi.org/10.13360/j.issn.2096-1359.201907036 Wang X, Tang S, Wu Z, Fang J, Qin X, Wei L (2021) Research status of biomass-based composite films with high barrier properties. J For Eng 6(6):13–22. https://doi.org/10.13360/j.issn.2096-1359.202102002 Miao C, Du H, Zhang X, Tippur HV (2021) Dynamic crack initiation and growth in cellulose nanopaper. Cellulose. https://doi.org/10.1007/s10570-021-04310-x Miao C, Du H, Parit M, Jiang Z, Tippur HV, Zhang X, Liu Z, Li J, Wang R (2020) Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose 27(6):3181–3195. https://doi.org/10.1007/s10570-020-03015-x Wu J, Che X, Hu H, Xu H, Li B, Liu Y, Li J, Ni Y, Zhang X, Ouyang X (2020) Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. J Mater Chem A 8(11):5442–5448. https://doi.org/10.1039/C9TA14039E Parit M, Du H, Zhang X, Prather C, Adams M, Jiang Z (2020) Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr Polym 240:116304. https://doi.org/10.1016/j.carbpol.2020.116304 Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Zhang K, Si C. (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32:2113082. https://doi.org/10.1002/adfm.202113082 Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020 Ma W, Li L, Xiao X, Du H, Ren X, Zhang X, Huang T-S (2020) Construction of chlorine labeled ZnO–chitosan loaded cellulose nanofibrils film with quick antibacterial performance and prominent UV stability. Macromol Mater Eng 305(8):2000228. https://doi.org/10.1002/mame.202000228 Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices - a review. Nano Energy 35:299–320. https://doi.org/10.1016/j.nanoen.2017.04.001 Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C. (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00427-0 Yang J, Li H, Cheng J, He T, Li J, Wang B (2021) Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J Mater Sci 56(24):13859–13873. https://doi.org/10.1007/s10853-021-05909-y Zhu M, Wu J, Du Z, Tay RY, Li H, Özyilmaz B, Teo EHT (2015) A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale 7(35):14730–14737. https://doi.org/10.1039/C5NR03020J Cao W, Chen F, Zhu Y, Zhang Y, Jiang Y, Ma M, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5):4583–4593. https://doi.org/10.1021/acsnano.8b00997 Zhang S, Liu H, Yang S, Shi X, Zhang D, Shan C, Mi L, Liu C, Shen C, Guo Z (2019) Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl Mater Interfaces 11(11):10922–10932. https://doi.org/10.1021/acsami.9b00900 Lee T-W, Lee S-E, Jeong YG (2016) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interfaces 8(20):13123–13132. https://doi.org/10.1021/acsami.6b02218 Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2(9):1003–1007. https://doi.org/10.1021/nl025674h Lu L, Wei X, Zhang Y, Zheng G, Dai K, Liu C, Shen C (2017) A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J Mater Chem C 5(28):7035–7042. https://doi.org/10.1039/C7TC02429K Priyadarshi R, Negi YS (2019) Poly(vinyl pyrrolidone)-mediated synthesis of silver nanowires decorated with silver nanospheres and their antimicrobial activity. Bull Mater Sci 42(3):118. https://doi.org/10.1007/s12034-019-1779-3 Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23(4):2389–2407. https://doi.org/10.1007/s10570-016-0963-5 Du H, Liu C, Zhang Y, Yu G, Si C, Li B (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind Crops Prod 94:736–745. https://doi.org/10.1016/j.indcrop.2016.09.059 Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X, Wang H, Li G, Li L, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr Polym 223:115116. https://doi.org/10.1016/j.carbpol.2019.115116 Du H, Parit M, Wu M, Che X, Wang Y, Zhang M, Wang R, Zhang X, Jiang Z, Li B (2020) Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J Hazard Mater 400:123106. https://doi.org/10.1016/j.jhazmat.2020.123106 Hong S, Song Y, Yuan Y, Lian H, Liimatainen H (2020) Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Ind Crops Prod 143:111913. https://doi.org/10.1016/j.indcrop.2019.111913 Wang H, Xie H, Du H, Wang X, Liu W, Duan Y, Zhang X, Sun L, Zhang X, Si C (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr Polym 239:116233. https://doi.org/10.1016/j.carbpol.2020.116233 Luan VH, Tien HN, Cuong TV, Kong B-S, Chung JS, Kim EJ, Hur SH (2012) Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers. J Mater Chem 22(17):8649–8653. https://doi.org/10.1039/C2JM16910J Lv P, Zhou H, Zhao M, Li D, Lu K, Wang D, Huang J, Cai Y, Lucia LA, Wei Q (2018) Highly flexible, transparent, and conductive silver nanowire-attached bacterial cellulose conductors. Cellulose 25(6):3189–3196. https://doi.org/10.1007/s10570-018-1773-8 Wan Y, Xiong P, Liu J, Feng F, Xun X, Gama FM, Zhang Q, Yao F, Yang Z, Luo H, Xu Y (2021) Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5):8439–8449. https://doi.org/10.1021/acsnano.0c10666 Zeng Z, Wu T, Han D, Ren Q, Siqueira G, Nyström G (2020) Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3):2927–2938. https://doi.org/10.1021/acsnano.9b07452 Wei H, Wang M, Zheng W, Jiang Z, Huang Y (2020) 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram Int 46(5):6199–6204. https://doi.org/10.1016/j.ceramint.2019.11.087 Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26(21):3484–3489. https://doi.org/10.1002/adma.201400108 Miao M, Liu R, Thaiboonrod S, Shi L, Cao S, Zhang J, Fang J, Feng X (2020) Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J Mater Chem C 8(9):3120–3126. https://doi.org/10.1039/C9TC06361G Xin W, Xi G, Cao W, Ma C, Liu T, Ma M, Bian J (2019) Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv 9(51):29636–29644. https://doi.org/10.1039/C9RA06399D