Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects

Biotechnology Advances - Tập 36 - Trang 641-665 - 2018
Hana Raschmanová1, Astrid Weninger2, Anton Glieder2, Karin Kovar3, Thomas Vogl4
1Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
2Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
3Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland
4Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Tài liệu tham khảo

Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573 Adamson, 2016, A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response, Cell, 167, 1867, 10.1016/j.cell.2016.11.048 Agmon, 2009, Analysis of repair mechanism choice during homologous recombination, Nucleic Acids Res., 37, 5081, 10.1093/nar/gkp495 Ahmad, 2014, Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98, 5301, 10.1007/s00253-014-5732-5 Anders, 2014, Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease, Nature, 513, 569, 10.1038/nature13579 Anders, 2016, Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9, Mol. Cell, 61, 895, 10.1016/j.molcel.2016.02.020 Anderson, 2015, Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity, J. Biotechnol., 211, 56, 10.1016/j.jbiotec.2015.06.427 Bao, 2015, Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 585, 10.1021/sb500255k Barnes, 2001, Non-homologous end joining as a mechanism of DNA repair, Curr. Biol., 11, R455, 10.1016/S0960-9822(01)00279-2 Barrangou, 2015, The roles of CRISPR-Cas systems in adaptive immunity and beyond, Curr. Opin. Immunol., 32, 36, 10.1016/j.coi.2014.12.008 Barth, 1996, 313 Beeman, 1992, Maternal-effect selfish genes in flour beetles, Science, 256, 89, 10.1126/science.1566060 Berlec, 2013, Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells, J. Ind. Microbiol. Biotechnol., 91 Berman, 2002, Candida Albicans: a molecular revolution built on lessons from budding yeast, Nat. Rev. Genet., 3, 918, 10.1038/nrg948 Bill, 2014, Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments, Front. Microbiol., 5, 85, 10.3389/fmicb.2014.00085 Biot-Pelletier, 2016, Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9, J. Biol. Eng., 10, 6, 10.1186/s13036-016-0028-1 Blazeck, 2011, Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach, Appl. Environ. Microbiol., 77, 7905, 10.1128/AEM.05763-11 Blazeck, 2015, Metabolic engineering of Yarrowia lipolytica for itaconic acid production, Metab. Eng., 32, 66, 10.1016/j.ymben.2015.09.005 Brinegar, 2017, The commercialization of genome-editing technologies, Crit. Rev. Biotechnol., 1–12 Burstein, 2016, New CRISPR-Cas systems from uncultivated microbes, Nature, 10.1038/nature21059 Burt, 2004, Homing endonuclease genes: the rise and fall and rise again of a selfish element, Curr. Opin. Genet. Dev., 10.1016/j.gde.2004.09.010 Caldecott, 2008, Single-strand break repair and genetic disease, Nat. Rev. Genet., 9, 619, 10.1038/nrg2380 Capecchi, 1989, Altering the genome by homologous recombination, Sci., 244, 1288, 10.1126/science.2660260 Carrington, 2015, CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity, Nucleic Acids Res., 43, e157, 10.1093/nar/gkv802 Charlesworth, 1989, The population genetics of Drosophila transposable elements, Annu. Rev Genet, 23, 251, 10.1146/annurev.ge.23.120189.001343 Chaudhuri, 2003, Transcription-targeted DNA deamination by the AID antibody diversification enzyme, Nature, 422, 726, 10.1038/nature01574 Chen, 2007, A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila, Science, 316, 597, 10.1126/science. 1138595 Chin, 2016, CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 43, 1517, 10.1007/s10295-016-1831-x Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science (80-), 339, 819, 10.1126/science.1231143 Cormack, 1999, Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata, Genetics, 987, 979, 10.1093/genetics/151.3.979 Cregg, 2000, Recombinant protein expression in Pichia pastoris, Mol. Biotechnol., 16, 23, 10.1385/MB:16:1:23 Da Silva, 2012, Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae, FEMS Yeast Res., 12, 197, 10.1111/j.1567-1364.2011.00769.x Das, 1982, A high-frequency transformation system for the yeast Kluyveromyces lactis, Curr. Genet., 6, 123, 10.1007/BF00435211 Deaner, 2017, Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae, Metab. Eng., 40, 14, 10.1016/j.ymben.2017.01.012 Deltcheva, 2011, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602, 10.1038/nature09886 Demain, 2009, Production of recombinant proteins by microbes and higher organisms, Biotechnol. Adv., 27, 297, 10.1016/j.biotechadv.2009.01.008 DiCarlo, 2013, Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 41, 4336, 10.1093/nar/gkt135 DiCarlo, 2015, Safeguarding CRISPR-Cas9 gene drives in yeast, Nat. Biotechnol., 33, 1250, 10.1038/nbt.3412 Dominguez, 2016, Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5, 10.1038/nrm.2015.2 Du, 2012, Customized optimization of metabolic pathways by combinatorial transcriptional engineering, Nucleic Acids Res., 40, e142, 10.1093/nar/gks549 Dudás, 2004, DNA double-strand break repair by homologous recombination, Mutat. Res., 566, 131, 10.1016/j.mrrev.2003.07.001 Egelie, 2016, The emerging patent landscape of CRISPR-Cas gene editing technology, Nat. Biotechnol., 34, 1025, 10.1038/nbt.3692 Ellis, 2009, Diversity-based, model-guided construction of synthetic gene networks with predicted functions, Nat. Biotechnol., 27, 465, 10.1038/nbt.1536 Enkler, 2016, Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system, Sci. Rep., 6, 35766, 10.1038/srep35766 Esvelt, 2014, Concerning RNA-guided gene drives for the alteration of wild populations, Elife, 3, e03401, 10.7554/eLife.03401 Farzadfard, 2013, Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas, ACS Synth. Biol., 2, 604, 10.1021/sb400081r Fennessy, 2014, Extending the Schizosaccharomyces pombe molecular genetic toolbox, PLoS One, 9, 10.1371/journal.pone.0097683 Fernandez, 2016, Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9, Yeast, 33, 549, 10.1002/yea.3178 Ferreira, 2017, Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes, FEBS Lett., 591, 3288, 10.1002/1873-3468.12835 Ferreira, 2017, Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae, ACS Synth. Biol. Fickers, 2003, New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica, J. Microbiol. Methods, 55, 727, 10.1016/j.mimet.2003.07.003 Fidel, 1999, Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans, Clin. Microbiol. Rev., 12, 80, 10.1128/CMR.12.1.80 Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 10.1038/nbt.2808 Fu, 2016, Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo, Nucleic Acids Res., 44, 5365, 10.1093/nar/gkw417 Gantz, 2015, The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations, Sci., 348, 442, 10.1126/science.aaa5945 Gao, 2014, Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant Biol., 56, 343, 10.1111/jipb.12152 Gao, 2016, Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system, J. Ind. Microbiol. Biotechnol., 43, 1085, 10.1007/s10295-016-1789-8 Gasiunas, 2013, RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?, Trends Microbiol., 1 Gellissen, 2000, Heterologous protein production in methylotrophic yeasts, Appl. Microbiol. Biotechnol., 54, 741, 10.1007/s002530000464 Generoso, 2016, Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae, J. Microbiol. Methods, 127, 203, 10.1016/j.mimet.2016.06.020 Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044 Grallert, 1993, A study of integrative transformation in Schizosaccharomyces pombe, Mol. Gen. Genet. MGG, 238, 26, 10.1007/BF00279526 Hammond, 2016, A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat. Biotechnol., 34, 78, 10.1038/nbt.3439 Hansen, 1996, Modification of biochemical pathways in industrial yeasts, J. Biotechnol., 10.1016/0168-1656(96)01523-4 Hao, 2016, Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae, Anal Biochem, 509, 118, 10.1016/j.ab.2016.07.008 Hartner, 2006, Regulation of methanol utilisation pathway genes in yeasts, Microb. Cell Fact., 5, 39, 10.1186/1475-2859-5-39 Heigwer, 2014, E-CRISP: fast CRISPR target site identification, Nat. Methods, 11, 122, 10.1038/nmeth.2812 Horwitz, 2015, Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas, Cell Syst., 1, 88, 10.1016/j.cels.2015.02.001 Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827, 10.1038/nbt.2647 Jacobs, 2014, Implementation of the CRISPR-Cas9 system in fission yeast, Nat. Commun., 5, 1, 10.1038/ncomms6344 Jakociunas, 2015, CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 1226, 10.1021/acssynbio.5b00007 Jakociunas, 2015, Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae, Metab. Eng., 28, 213, 10.1016/j.ymben.2015.01.008 Jensen, 2014, EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae, FEMS Yeast Res., 14, 238, 10.1111/1567-1364.12118 Jensen, 2017, Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies, Microb. Cell Factories, 16, 46, 10.1186/s12934-017-0664-2 Jessop-Fabre, 2016, EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9, Biotechnol. J., 11, 1110, 10.1002/biot.201600147 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Jinek, 2014, Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 343, 1247997, 10.1126/science.1247997 Jones, 2004, The diploid genome sequence of Candida albicans, Proc. Natl. Acad. Sci. U. S. A., 101 Kabir, 2009, Human fungal pathogen Candida albicans in the postgenomic era: an overview, Expert Rev. Anti. Infect. Ther., 7, 121, 10.1586/14787210.7.1.121 Kabir, 2012, 2012 Kang, 2016, Multiplexed CRISPR/Cas9 and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast, ACS Synth. Biol., 10.1021/acssynbio.6b00080 Karim, 2013, Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications, FEMS Yeast Res., 13, 107, 10.1111/1567-1364.12016 Keeney, 1994, Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe, Genetics, 136, 849, 10.1093/genetics/136.3.849 Khakhar, 2016, Cell-Cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors, ACS Synth. Biol., 5, 279, 10.1021/acssynbio.5b00064 Kim, 2015, Yeast synthetic biology for the production of recombinant therapeutic proteins, FEMS Yeast Res., 15, 1 Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526 Kooistra, 2004, Efficient gene targeting in Kluyveromyces lactis, Yeast, 21, 781, 10.1002/yea.1131 Krainer, 2013, Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris, Sci. Rep., 3, 3279, 10.1038/srep03279 Krawchuk, 1999, High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology, Yeast, 15, 1419, 10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q Krcmery, 2017, Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance, J. Hosp. Infect., 50, 243, 10.1053/jhin.2001.1151 Krijger, 2012, 1 Labun, 2016, CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering, Nucleic Acids Res, 44, W272, 10.1093/nar/gkw398 Laughery, 2015, New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae, Yeast, 32, 711, 10.1002/yea.3098 Ledesma-Amaro, 2016, Metabolic engineering for expanding the substrate range of Yarrowia lipolytica, Trends Biotechnol., 34, 798, 10.1016/j.tibtech.2016.04.010 Ledesma-Amaro, 2016, Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids, Prog. Lipid Res., 61, 40, 10.1016/j.plipres.2015.12.001 Ledesma-Amaro, 2016, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids, Metab. Eng., 38, 38, 10.1016/j.ymben.2016.06.004 Ledesma-Amaro, 2016, Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose, Metab. Eng., 38, 115, 10.1016/j.ymben.2016.07.001 Ledford, 2017, Why the CRISPR patent verdict isn’t the end of the story, Nature Ledford, 2017, Broad Institute wins bitter battle over CRISPR patents, Nature, 542, 401, 10.1038/nature.2017.21502 Lee, 1988, Cell cycle control genes in fission yeast and mammalian cells, Trends Genet., 4, 287, 10.1016/0168-9525(88)90171-0 Lee, 2015, A highly characterized yeast toolkit for modular, multipart assembly, ACS Synth. Biol., 4, 975, 10.1021/sb500366v Liachko, 2013, An autonomously replicating sequence for use in a wide range of budding yeasts, FEMS Yeast Res. Lian, 2016, Construction of plasmids with tunable copy numbers in saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration, Biotechnol. Bioeng., 113, 2462, 10.1002/bit.26004 Lian, 2017, Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system, Nat. Commun., 8, 1688, 10.1038/s41467-017-01695-x Lieber, 2010, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu. Rev. Biochem., 79, 181, 10.1146/annurev.biochem.052308.093131 Lindsay, 2016, CrispRVariants charts the mutation spectrum of genome engineering experiments, Nat. Biotechnol., 34, 701, 10.1038/nbt.3628 Liu, 2013, Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces, Curr. Opin. Biotechnol., 1–8 Liu, 2015, An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica, Metab. Eng., 29, 36, 10.1016/j.ymben.2015.02.003 Lyttle, 1991, Segregation distorters, Annu. Rev. Genet., 25, 511, 10.1146/annurev.ge.25.120191.002455 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Mans, 2015, CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae, FEMS Yeast Res., 15, 10.1093/femsyr/fov004 Martínez, 2012, Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation, Curr. Opin. Biotechnol., 23, 965, 10.1016/j.copbio.2012.03.011 Mattanovich, 2012, Recombinant protein production in yeasts, Methods Mol. Biol., 824, 329, 10.1007/978-1-61779-433-9_17 Mayer, 2017, 5594 McConnell Smith, 2009, Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease, Proc. Natl. Acad. Sci. U. S. A., 106, 5099, 10.1073/pnas.0810588106 Metzger, 2011, Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template, Nucleic Acids Res., 39, 926, 10.1093/nar/gkq826 Min, 2015, 1, 1 Montague, 2014, CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing, Nucleic Acids Res., 42, W401, 10.1093/nar/gku410 Muramatsu, 2000, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, 102, 553, 10.1016/S0092-8674(00)00078-7 Näätsaari, 2012, Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology, PLoS One, 7, e39720, 10.1371/journal.pone.0039720 Naito, 2015, CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites, Bioinformatics, 31, 1120, 10.1093/bioinformatics/btu743 Negredo, 1997, Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans, Microbiology, 143, 297, 10.1099/00221287-143-2-297 Nevoigt, 2008, Progress in metabolic engineering of Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 72, 379, 10.1128/MMBR.00025-07 Nishida, 2016, Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, 353, aaf8729, 10.1126/science.aaf8729 Nowak, 2016, Guide RNA engineering for versatile Cas9 functionality, Nucleic Acids Res., 44, 9555 Numamoto, 2017, Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha, J. Biosci. Bioeng., 124, 487, 10.1016/j.jbiosc.2017.06.001 Osakabe, 2016, Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants, Sci. Rep., 6, 26685, 10.1038/srep26685 Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051 Peng, 2016, Potential pitfalls of CRISPR/Cas9-mediated genome editing, FEBS J., 283, 1218, 10.1111/febs.13586 Petrescu-Danila, 2009, Fission yeast Schizosaccharomyces pombe as a producer and secretor of heterologous proteins. Rom, Biotechnol. Lett., 14, 4201 Portela, 2017, Synthetic core promoters as universal parts for fine-tuning expression in different yeast species, ACS Synth. Biol., 6, 471, 10.1021/acssynbio.6b00178 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Qiao, 2017, Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism, Nat. Biotechnol., 10.1038/nbt.3763 Radecka, 2015, Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res., 15, 10.1093/femsyr/fov053 Rath, 2015, The CRISPR-Cas immune system: biology, mechanisms and applications, Biochimie, 117, 119, 10.1016/j.biochi.2015.03.025 Reardon, 2016, CRISPR heavyweights battle in US patent court, Nature, 540, 326, 10.1038/nature.2016.21101 Reider Apel, 2017, A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae, Nucleic Acids Res, 45, 496, 10.1093/nar/gkw1023 Rodicio, 2013, Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis, Yeast, 30, 165, 10.1002/yea.2954 Rodriguez, 2016, Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway, Biotechnol. Biofuels, 9, 149, 10.1186/s13068-016-0562-6 Rodríguez-López, 2016, A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast, Wellcome Open Res., 1, 19, 10.12688/wellcomeopenres.10038.1 Rogozin, 2007, Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase, Nat. Immunol., 8, 647, 10.1038/ni1463 Ronda, 2014, Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool, Biotechnol Bioeng, 111, 1604, 10.1002/bit.25233 Ronda, 2015, CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae, Microb. Cell Fact., 14, 97, 10.1186/s12934-015-0288-3 Rouet, 1994, Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease, Mol. Cell. Biol., 14, 8096, 10.1128/MCB.14.12.8096 Ryan, 2014, Multiplex engineering of industrial yeast genomes using CRISPRm, Methods Enzymol., 546, 473, 10.1016/B978-0-12-801185-0.00023-4 Ryan, 2014, Selection of chromosomal DNA libraries using a multiplex CRISPR system, Elife, 3, 1, 10.7554/eLife.03703 Sadhu, 2016, CRISPR-directed mitotic recombination enables genetic mapping without crosses, Science, 352, 1113, 10.1126/science.aaf5124 Sambamurti, 1997, Expression and secretion of mammalian proteins in Schizosaccharomyces pombe, 149 Sander, 2014, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol., 32, 347, 10.1038/nbt.2842 Sasano, 2016, CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae, Sci. Rep., 6, 11, 10.1038/srep30278 Satomura, 2017, Precise genome-wide base editing by the CRISPR Nickase system in yeast, Sci. Rep., 7, 2095, 10.1038/s41598-017-02013-7 Schwartz, 2016, Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica, ACS Synth. Biol., 5, 356, 10.1021/acssynbio.5b00162 Schwartz, 2017, Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica, ACS Synth. Biol., 6, 402, 10.1021/acssynbio.6b00285 Segurado, 2002, Increased recombination intermediates and homologous integration hot spots at DNA replication origins, Mol. Cell, 10, 907, 10.1016/S1097-2765(02)00684-6 Selmecki, 2009, Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance, PLoS ONE, 5, 1 Selmecki, 2010, Genomic plasticity of the human fungal pathogen, Eukaryot. Cell, 9, 991, 10.1128/EC.00060-10 Shaw, 2016, Metabolic engineering of microbial competitive advantage for industrial fermentation processes, Science, 353, 583, 10.1126/science.aaf6159 Shi, 2016, A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae, Metab. Eng., 33, 19, 10.1016/j.ymben.2015.10.011 Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science (80-), 351, 84, 10.1126/science.aad5227 Smih, 1995, Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells, Nucleic Acids Res., 23, 5012, 10.1093/nar/23.24.5012 Smith, 2016, Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design, Genome Biol., 17, 45, 10.1186/s13059-016-0900-9 Solis-Escalante, 2013, amdSYM, A new dominant recyclable marker cassette for Saccharomyces cerevisiae, FEMS Yeast Res., 13, 126, 10.1111/1567-1364.12024 Solis-Escalante, 2014, Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae, FEMS Yeast Res., 14, 741, 10.1111/1567-1364.12162 Spencer, 2002, Non-conventional yeasts, Appl. Microbiol. Biotechnol., 58, 147, 10.1007/s00253-001-0834-2 Spohner, 2016, Kluyveromyces lactis: an emerging tool in biotechnology, J. Biotechnol., 222, 104, 10.1016/j.jbiotec.2016.02.023 Standage-Beier, 2015, Targeted large-scale deletion of bacterial genomes using CRISPR-nickases, ACS Synth. Biol., 4, 1217, 10.1021/acssynbio.5b00132 Stark, 1989, Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3, Yeast, 5, 35, 10.1002/yea.320050106 Stephanopoulos, 2012, Synthetic biology and metabolic engineering, ACS Synth. Biol., 1, 514, 10.1021/sb300094q Sternberg, 2014, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature., 10.1038/nature13011 Storici, 2003, Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast, Proc. Natl. Acad. Sci. U. S. A., 100, 14994, 10.1073/pnas.2036296100 Stovicek, 2015, EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains, J. Ind. Microbiol. Biotechnol., 42, 1519, 10.1007/s10295-015-1684-8 Stovicek, 2015, CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains, Metab. Eng. Commun., 2, 13, 10.1016/j.meteno.2015.03.001 Stovicek, 2017, CRISPR/Cas system for yeast genome engineering: advances and applications, FEMS Yeast Res., 17, 1, 10.1093/femsyr/fox030 Sugiyama, 2009, Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 84, 1045, 10.1007/s00253-009-2144-z Swiat, 2017, FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae, Nucleic Acids Res., 45, 12585, 10.1093/nar/gkx1007 Tai, 2013, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production, Metab. Eng., 15, 1, 10.1016/j.ymben.2012.08.007 TheBioBricksFoundation, 2012, 2012 Tiels, 2012, A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes, Nat. Biotechnol., 30, 1225, 10.1038/nbt.2427 Tsai, 2015, Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR, Biotechnol. Bioeng., 112, 2406, 10.1002/bit.25632 Tsarmpopoulos, 2016, In-yeast engineering of a bacterial genome using CRISPR/Cas9, ACS Synth. Biol., 5, 104, 10.1021/acssynbio.5b00196 Ueno, 2007, Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata, Eukaryot. Cell, 6, 1239, 10.1128/EC.00414-06 Van Ooyen, 2006, Heterologous protein production in the yeast Kluyveromyces lactis, FEMS Yeast Res., 6, 381, 10.1111/j.1567-1364.2006.00049.x Vanegas, 2017, SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae, Microb. Cell Fact., 16, 25, 10.1186/s12934-017-0632-x Verbeke, 2013, Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains, Biotechnol. Lett., 35, 571, 10.1007/s10529-012-1107-0 Verwaal, 2017, CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae, Yeast. Vigentini, 2017, CRISPR/Cas9 system as a valuable genome editing tool for wine yeasts with application to decrease urea production, Front. Microbiol., 8, 2194, 10.3389/fmicb.2017.02194 Vogl, 2013, New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris, Curr. Opin. Biotechnol., 24, 1094, 10.1016/j.copbio.2013.02.024 de Vries, 2017, CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus, Microb. Cell Fact., 16, 222, 10.1186/s12934-017-0835-1 Vyas, 2015, A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families, Sci. Adv., 1, e1500248, 10.1126/sciadv.1500248 Wagner, 2015, Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances, Fungal Genet. Biol., 1 Walsh, 2010, Post-translational modifications of protein biopharmaceuticals, Drug Discov. Today, 15, 773, 10.1016/j.drudis.2010.06.009 Walter, 2016, CRISPR-Cas-Assisted Multiplexing (CAM): simple same-day multi-locus engineering in yeast, J. Cell Physiol., 231, 2563, 10.1002/jcp.25375 Wang, 1999, Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n- alkane-assimilating yeast Yarrowia lipolytica, J. Bacteriol., 181, 5140, 10.1128/JB.181.17.5140-5148.1999 Watkins-Chow, 2017, Highly efficient Cpf1-mediated gene targeting in mice following high concentration pronuclear injection, G3 (Bethesda), 7, 719, 10.1534/g3.116.038091 Weninger, 2015, A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris, FEMS Yeast Res., 15, fov082, 10.1093/femsyr/fov082 Weninger, 2016, Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris, J. Biotechnol., 235, 139, 10.1016/j.jbiotec.2016.03.027 Weninger, 2016, Key methods for synthetic biology: genome engineering and DNA assembly, 101 Weninger, 2017, Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers, J. Cell. Biochem. Werren, 1997, Biology of Wolbachia, Annu. Rev. Entomol., 124, 587, 10.1146/annurev.ento.42.1.587 Willis, 2011, Studying G2 DNA damage checkpoints using the fission yeast Schizosaccharomyces pombe, Methods Mol. Biol, 782, 1, 10.1007/978-1-61779-273-1_1 Wong, 2017, YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica, Metab. Eng. Commun., 5, 68, 10.1016/j.meteno.2017.09.001 Xie, 2015, Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proc. Natl. Acad. Sci. U. S. A., 112, 3570, 10.1073/pnas.1420294112 Yurimoto, 2011, Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis, Int. J. Microbiol., 2011, 101298, 10.1155/2011/101298 Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052 Zeeman, 2003, The acetyl co-enzyme a synthetase genes of Kluyveromyces lactis, Yeast, 20, 13, 10.1002/yea.936 Zeevi, 2014, Molecular dissection of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters, Genome Res., 24, 1991, 10.1101/gr.179259.114 Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038 Zhang, 2014, Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease, Appl. Environ. Microbiol., 80, 7694, 10.1128/AEM.02310-14 Zhu, 2009, A systematical investigation on the genetic stability of multi-copy Pichia pastoris strains, Biotechnol. Lett., 31, 679, 10.1007/s10529-009-9917-4 Zischewski, 2016, Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases, Biotechnol. Adv., 35, 95, 10.1016/j.biotechadv.2016.12.003