Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects
Tài liệu tham khảo
Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573
Adamson, 2016, A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response, Cell, 167, 1867, 10.1016/j.cell.2016.11.048
Agmon, 2009, Analysis of repair mechanism choice during homologous recombination, Nucleic Acids Res., 37, 5081, 10.1093/nar/gkp495
Ahmad, 2014, Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98, 5301, 10.1007/s00253-014-5732-5
Anders, 2014, Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease, Nature, 513, 569, 10.1038/nature13579
Anders, 2016, Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9, Mol. Cell, 61, 895, 10.1016/j.molcel.2016.02.020
Anderson, 2015, Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity, J. Biotechnol., 211, 56, 10.1016/j.jbiotec.2015.06.427
Bao, 2015, Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 585, 10.1021/sb500255k
Barnes, 2001, Non-homologous end joining as a mechanism of DNA repair, Curr. Biol., 11, R455, 10.1016/S0960-9822(01)00279-2
Barrangou, 2015, The roles of CRISPR-Cas systems in adaptive immunity and beyond, Curr. Opin. Immunol., 32, 36, 10.1016/j.coi.2014.12.008
Barth, 1996, 313
Beeman, 1992, Maternal-effect selfish genes in flour beetles, Science, 256, 89, 10.1126/science.1566060
Berlec, 2013, Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells, J. Ind. Microbiol. Biotechnol., 91
Berman, 2002, Candida Albicans: a molecular revolution built on lessons from budding yeast, Nat. Rev. Genet., 3, 918, 10.1038/nrg948
Bill, 2014, Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments, Front. Microbiol., 5, 85, 10.3389/fmicb.2014.00085
Biot-Pelletier, 2016, Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9, J. Biol. Eng., 10, 6, 10.1186/s13036-016-0028-1
Blazeck, 2011, Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach, Appl. Environ. Microbiol., 77, 7905, 10.1128/AEM.05763-11
Blazeck, 2015, Metabolic engineering of Yarrowia lipolytica for itaconic acid production, Metab. Eng., 32, 66, 10.1016/j.ymben.2015.09.005
Brinegar, 2017, The commercialization of genome-editing technologies, Crit. Rev. Biotechnol., 1–12
Burstein, 2016, New CRISPR-Cas systems from uncultivated microbes, Nature, 10.1038/nature21059
Burt, 2004, Homing endonuclease genes: the rise and fall and rise again of a selfish element, Curr. Opin. Genet. Dev., 10.1016/j.gde.2004.09.010
Caldecott, 2008, Single-strand break repair and genetic disease, Nat. Rev. Genet., 9, 619, 10.1038/nrg2380
Capecchi, 1989, Altering the genome by homologous recombination, Sci., 244, 1288, 10.1126/science.2660260
Carrington, 2015, CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity, Nucleic Acids Res., 43, e157, 10.1093/nar/gkv802
Charlesworth, 1989, The population genetics of Drosophila transposable elements, Annu. Rev Genet, 23, 251, 10.1146/annurev.ge.23.120189.001343
Chaudhuri, 2003, Transcription-targeted DNA deamination by the AID antibody diversification enzyme, Nature, 422, 726, 10.1038/nature01574
Chen, 2007, A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila, Science, 316, 597, 10.1126/science. 1138595
Chin, 2016, CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 43, 1517, 10.1007/s10295-016-1831-x
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science (80-), 339, 819, 10.1126/science.1231143
Cormack, 1999, Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata, Genetics, 987, 979, 10.1093/genetics/151.3.979
Cregg, 2000, Recombinant protein expression in Pichia pastoris, Mol. Biotechnol., 16, 23, 10.1385/MB:16:1:23
Da Silva, 2012, Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae, FEMS Yeast Res., 12, 197, 10.1111/j.1567-1364.2011.00769.x
Das, 1982, A high-frequency transformation system for the yeast Kluyveromyces lactis, Curr. Genet., 6, 123, 10.1007/BF00435211
Deaner, 2017, Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae, Metab. Eng., 40, 14, 10.1016/j.ymben.2017.01.012
Deltcheva, 2011, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602, 10.1038/nature09886
Demain, 2009, Production of recombinant proteins by microbes and higher organisms, Biotechnol. Adv., 27, 297, 10.1016/j.biotechadv.2009.01.008
DiCarlo, 2013, Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 41, 4336, 10.1093/nar/gkt135
DiCarlo, 2015, Safeguarding CRISPR-Cas9 gene drives in yeast, Nat. Biotechnol., 33, 1250, 10.1038/nbt.3412
Dominguez, 2016, Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5, 10.1038/nrm.2015.2
Du, 2012, Customized optimization of metabolic pathways by combinatorial transcriptional engineering, Nucleic Acids Res., 40, e142, 10.1093/nar/gks549
Dudás, 2004, DNA double-strand break repair by homologous recombination, Mutat. Res., 566, 131, 10.1016/j.mrrev.2003.07.001
Egelie, 2016, The emerging patent landscape of CRISPR-Cas gene editing technology, Nat. Biotechnol., 34, 1025, 10.1038/nbt.3692
Ellis, 2009, Diversity-based, model-guided construction of synthetic gene networks with predicted functions, Nat. Biotechnol., 27, 465, 10.1038/nbt.1536
Enkler, 2016, Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system, Sci. Rep., 6, 35766, 10.1038/srep35766
Esvelt, 2014, Concerning RNA-guided gene drives for the alteration of wild populations, Elife, 3, e03401, 10.7554/eLife.03401
Farzadfard, 2013, Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas, ACS Synth. Biol., 2, 604, 10.1021/sb400081r
Fennessy, 2014, Extending the Schizosaccharomyces pombe molecular genetic toolbox, PLoS One, 9, 10.1371/journal.pone.0097683
Fernandez, 2016, Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9, Yeast, 33, 549, 10.1002/yea.3178
Ferreira, 2017, Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes, FEBS Lett., 591, 3288, 10.1002/1873-3468.12835
Ferreira, 2017, Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae, ACS Synth. Biol.
Fickers, 2003, New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica, J. Microbiol. Methods, 55, 727, 10.1016/j.mimet.2003.07.003
Fidel, 1999, Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans, Clin. Microbiol. Rev., 12, 80, 10.1128/CMR.12.1.80
Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 10.1038/nbt.2808
Fu, 2016, Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo, Nucleic Acids Res., 44, 5365, 10.1093/nar/gkw417
Gantz, 2015, The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations, Sci., 348, 442, 10.1126/science.aaa5945
Gao, 2014, Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant Biol., 56, 343, 10.1111/jipb.12152
Gao, 2016, Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system, J. Ind. Microbiol. Biotechnol., 43, 1085, 10.1007/s10295-016-1789-8
Gasiunas, 2013, RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?, Trends Microbiol., 1
Gellissen, 2000, Heterologous protein production in methylotrophic yeasts, Appl. Microbiol. Biotechnol., 54, 741, 10.1007/s002530000464
Generoso, 2016, Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae, J. Microbiol. Methods, 127, 203, 10.1016/j.mimet.2016.06.020
Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044
Grallert, 1993, A study of integrative transformation in Schizosaccharomyces pombe, Mol. Gen. Genet. MGG, 238, 26, 10.1007/BF00279526
Hammond, 2016, A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat. Biotechnol., 34, 78, 10.1038/nbt.3439
Hansen, 1996, Modification of biochemical pathways in industrial yeasts, J. Biotechnol., 10.1016/0168-1656(96)01523-4
Hao, 2016, Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae, Anal Biochem, 509, 118, 10.1016/j.ab.2016.07.008
Hartner, 2006, Regulation of methanol utilisation pathway genes in yeasts, Microb. Cell Fact., 5, 39, 10.1186/1475-2859-5-39
Heigwer, 2014, E-CRISP: fast CRISPR target site identification, Nat. Methods, 11, 122, 10.1038/nmeth.2812
Horwitz, 2015, Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas, Cell Syst., 1, 88, 10.1016/j.cels.2015.02.001
Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827, 10.1038/nbt.2647
Jacobs, 2014, Implementation of the CRISPR-Cas9 system in fission yeast, Nat. Commun., 5, 1, 10.1038/ncomms6344
Jakociunas, 2015, CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 1226, 10.1021/acssynbio.5b00007
Jakociunas, 2015, Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae, Metab. Eng., 28, 213, 10.1016/j.ymben.2015.01.008
Jensen, 2014, EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae, FEMS Yeast Res., 14, 238, 10.1111/1567-1364.12118
Jensen, 2017, Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies, Microb. Cell Factories, 16, 46, 10.1186/s12934-017-0664-2
Jessop-Fabre, 2016, EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9, Biotechnol. J., 11, 1110, 10.1002/biot.201600147
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Jinek, 2014, Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 343, 1247997, 10.1126/science.1247997
Jones, 2004, The diploid genome sequence of Candida albicans, Proc. Natl. Acad. Sci. U. S. A., 101
Kabir, 2009, Human fungal pathogen Candida albicans in the postgenomic era: an overview, Expert Rev. Anti. Infect. Ther., 7, 121, 10.1586/14787210.7.1.121
Kabir, 2012, 2012
Kang, 2016, Multiplexed CRISPR/Cas9 and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast, ACS Synth. Biol., 10.1021/acssynbio.6b00080
Karim, 2013, Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications, FEMS Yeast Res., 13, 107, 10.1111/1567-1364.12016
Keeney, 1994, Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe, Genetics, 136, 849, 10.1093/genetics/136.3.849
Khakhar, 2016, Cell-Cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors, ACS Synth. Biol., 5, 279, 10.1021/acssynbio.5b00064
Kim, 2015, Yeast synthetic biology for the production of recombinant therapeutic proteins, FEMS Yeast Res., 15, 1
Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526
Kooistra, 2004, Efficient gene targeting in Kluyveromyces lactis, Yeast, 21, 781, 10.1002/yea.1131
Krainer, 2013, Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris, Sci. Rep., 3, 3279, 10.1038/srep03279
Krawchuk, 1999, High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology, Yeast, 15, 1419, 10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q
Krcmery, 2017, Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance, J. Hosp. Infect., 50, 243, 10.1053/jhin.2001.1151
Krijger, 2012, 1
Labun, 2016, CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering, Nucleic Acids Res, 44, W272, 10.1093/nar/gkw398
Laughery, 2015, New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae, Yeast, 32, 711, 10.1002/yea.3098
Ledesma-Amaro, 2016, Metabolic engineering for expanding the substrate range of Yarrowia lipolytica, Trends Biotechnol., 34, 798, 10.1016/j.tibtech.2016.04.010
Ledesma-Amaro, 2016, Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids, Prog. Lipid Res., 61, 40, 10.1016/j.plipres.2015.12.001
Ledesma-Amaro, 2016, Combining metabolic engineering and process optimization to improve production and secretion of fatty acids, Metab. Eng., 38, 38, 10.1016/j.ymben.2016.06.004
Ledesma-Amaro, 2016, Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose, Metab. Eng., 38, 115, 10.1016/j.ymben.2016.07.001
Ledford, 2017, Why the CRISPR patent verdict isn’t the end of the story, Nature
Ledford, 2017, Broad Institute wins bitter battle over CRISPR patents, Nature, 542, 401, 10.1038/nature.2017.21502
Lee, 1988, Cell cycle control genes in fission yeast and mammalian cells, Trends Genet., 4, 287, 10.1016/0168-9525(88)90171-0
Lee, 2015, A highly characterized yeast toolkit for modular, multipart assembly, ACS Synth. Biol., 4, 975, 10.1021/sb500366v
Liachko, 2013, An autonomously replicating sequence for use in a wide range of budding yeasts, FEMS Yeast Res.
Lian, 2016, Construction of plasmids with tunable copy numbers in saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration, Biotechnol. Bioeng., 113, 2462, 10.1002/bit.26004
Lian, 2017, Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system, Nat. Commun., 8, 1688, 10.1038/s41467-017-01695-x
Lieber, 2010, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu. Rev. Biochem., 79, 181, 10.1146/annurev.biochem.052308.093131
Lindsay, 2016, CrispRVariants charts the mutation spectrum of genome engineering experiments, Nat. Biotechnol., 34, 701, 10.1038/nbt.3628
Liu, 2013, Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces, Curr. Opin. Biotechnol., 1–8
Liu, 2015, An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica, Metab. Eng., 29, 36, 10.1016/j.ymben.2015.02.003
Lyttle, 1991, Segregation distorters, Annu. Rev. Genet., 25, 511, 10.1146/annurev.ge.25.120191.002455
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Mans, 2015, CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae, FEMS Yeast Res., 15, 10.1093/femsyr/fov004
Martínez, 2012, Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation, Curr. Opin. Biotechnol., 23, 965, 10.1016/j.copbio.2012.03.011
Mattanovich, 2012, Recombinant protein production in yeasts, Methods Mol. Biol., 824, 329, 10.1007/978-1-61779-433-9_17
Mayer, 2017, 5594
McConnell Smith, 2009, Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease, Proc. Natl. Acad. Sci. U. S. A., 106, 5099, 10.1073/pnas.0810588106
Metzger, 2011, Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template, Nucleic Acids Res., 39, 926, 10.1093/nar/gkq826
Min, 2015, 1, 1
Montague, 2014, CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing, Nucleic Acids Res., 42, W401, 10.1093/nar/gku410
Muramatsu, 2000, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, 102, 553, 10.1016/S0092-8674(00)00078-7
Näätsaari, 2012, Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology, PLoS One, 7, e39720, 10.1371/journal.pone.0039720
Naito, 2015, CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites, Bioinformatics, 31, 1120, 10.1093/bioinformatics/btu743
Negredo, 1997, Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans, Microbiology, 143, 297, 10.1099/00221287-143-2-297
Nevoigt, 2008, Progress in metabolic engineering of Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 72, 379, 10.1128/MMBR.00025-07
Nishida, 2016, Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, 353, aaf8729, 10.1126/science.aaf8729
Nowak, 2016, Guide RNA engineering for versatile Cas9 functionality, Nucleic Acids Res., 44, 9555
Numamoto, 2017, Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha, J. Biosci. Bioeng., 124, 487, 10.1016/j.jbiosc.2017.06.001
Osakabe, 2016, Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants, Sci. Rep., 6, 26685, 10.1038/srep26685
Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051
Peng, 2016, Potential pitfalls of CRISPR/Cas9-mediated genome editing, FEBS J., 283, 1218, 10.1111/febs.13586
Petrescu-Danila, 2009, Fission yeast Schizosaccharomyces pombe as a producer and secretor of heterologous proteins. Rom, Biotechnol. Lett., 14, 4201
Portela, 2017, Synthetic core promoters as universal parts for fine-tuning expression in different yeast species, ACS Synth. Biol., 6, 471, 10.1021/acssynbio.6b00178
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Qiao, 2017, Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism, Nat. Biotechnol., 10.1038/nbt.3763
Radecka, 2015, Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation, FEMS Yeast Res., 15, 10.1093/femsyr/fov053
Rath, 2015, The CRISPR-Cas immune system: biology, mechanisms and applications, Biochimie, 117, 119, 10.1016/j.biochi.2015.03.025
Reardon, 2016, CRISPR heavyweights battle in US patent court, Nature, 540, 326, 10.1038/nature.2016.21101
Reider Apel, 2017, A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae, Nucleic Acids Res, 45, 496, 10.1093/nar/gkw1023
Rodicio, 2013, Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis, Yeast, 30, 165, 10.1002/yea.2954
Rodriguez, 2016, Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway, Biotechnol. Biofuels, 9, 149, 10.1186/s13068-016-0562-6
Rodríguez-López, 2016, A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast, Wellcome Open Res., 1, 19, 10.12688/wellcomeopenres.10038.1
Rogozin, 2007, Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase, Nat. Immunol., 8, 647, 10.1038/ni1463
Ronda, 2014, Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool, Biotechnol Bioeng, 111, 1604, 10.1002/bit.25233
Ronda, 2015, CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae, Microb. Cell Fact., 14, 97, 10.1186/s12934-015-0288-3
Rouet, 1994, Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease, Mol. Cell. Biol., 14, 8096, 10.1128/MCB.14.12.8096
Ryan, 2014, Multiplex engineering of industrial yeast genomes using CRISPRm, Methods Enzymol., 546, 473, 10.1016/B978-0-12-801185-0.00023-4
Ryan, 2014, Selection of chromosomal DNA libraries using a multiplex CRISPR system, Elife, 3, 1, 10.7554/eLife.03703
Sadhu, 2016, CRISPR-directed mitotic recombination enables genetic mapping without crosses, Science, 352, 1113, 10.1126/science.aaf5124
Sambamurti, 1997, Expression and secretion of mammalian proteins in Schizosaccharomyces pombe, 149
Sander, 2014, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol., 32, 347, 10.1038/nbt.2842
Sasano, 2016, CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae, Sci. Rep., 6, 11, 10.1038/srep30278
Satomura, 2017, Precise genome-wide base editing by the CRISPR Nickase system in yeast, Sci. Rep., 7, 2095, 10.1038/s41598-017-02013-7
Schwartz, 2016, Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica, ACS Synth. Biol., 5, 356, 10.1021/acssynbio.5b00162
Schwartz, 2017, Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica, ACS Synth. Biol., 6, 402, 10.1021/acssynbio.6b00285
Segurado, 2002, Increased recombination intermediates and homologous integration hot spots at DNA replication origins, Mol. Cell, 10, 907, 10.1016/S1097-2765(02)00684-6
Selmecki, 2009, Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance, PLoS ONE, 5, 1
Selmecki, 2010, Genomic plasticity of the human fungal pathogen, Eukaryot. Cell, 9, 991, 10.1128/EC.00060-10
Shaw, 2016, Metabolic engineering of microbial competitive advantage for industrial fermentation processes, Science, 353, 583, 10.1126/science.aaf6159
Shi, 2016, A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae, Metab. Eng., 33, 19, 10.1016/j.ymben.2015.10.011
Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science (80-), 351, 84, 10.1126/science.aad5227
Smih, 1995, Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells, Nucleic Acids Res., 23, 5012, 10.1093/nar/23.24.5012
Smith, 2016, Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design, Genome Biol., 17, 45, 10.1186/s13059-016-0900-9
Solis-Escalante, 2013, amdSYM, A new dominant recyclable marker cassette for Saccharomyces cerevisiae, FEMS Yeast Res., 13, 126, 10.1111/1567-1364.12024
Solis-Escalante, 2014, Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae, FEMS Yeast Res., 14, 741, 10.1111/1567-1364.12162
Spencer, 2002, Non-conventional yeasts, Appl. Microbiol. Biotechnol., 58, 147, 10.1007/s00253-001-0834-2
Spohner, 2016, Kluyveromyces lactis: an emerging tool in biotechnology, J. Biotechnol., 222, 104, 10.1016/j.jbiotec.2016.02.023
Standage-Beier, 2015, Targeted large-scale deletion of bacterial genomes using CRISPR-nickases, ACS Synth. Biol., 4, 1217, 10.1021/acssynbio.5b00132
Stark, 1989, Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3, Yeast, 5, 35, 10.1002/yea.320050106
Stephanopoulos, 2012, Synthetic biology and metabolic engineering, ACS Synth. Biol., 1, 514, 10.1021/sb300094q
Sternberg, 2014, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature., 10.1038/nature13011
Storici, 2003, Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast, Proc. Natl. Acad. Sci. U. S. A., 100, 14994, 10.1073/pnas.2036296100
Stovicek, 2015, EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains, J. Ind. Microbiol. Biotechnol., 42, 1519, 10.1007/s10295-015-1684-8
Stovicek, 2015, CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains, Metab. Eng. Commun., 2, 13, 10.1016/j.meteno.2015.03.001
Stovicek, 2017, CRISPR/Cas system for yeast genome engineering: advances and applications, FEMS Yeast Res., 17, 1, 10.1093/femsyr/fox030
Sugiyama, 2009, Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 84, 1045, 10.1007/s00253-009-2144-z
Swiat, 2017, FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae, Nucleic Acids Res., 45, 12585, 10.1093/nar/gkx1007
Tai, 2013, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production, Metab. Eng., 15, 1, 10.1016/j.ymben.2012.08.007
TheBioBricksFoundation, 2012, 2012
Tiels, 2012, A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes, Nat. Biotechnol., 30, 1225, 10.1038/nbt.2427
Tsai, 2015, Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR, Biotechnol. Bioeng., 112, 2406, 10.1002/bit.25632
Tsarmpopoulos, 2016, In-yeast engineering of a bacterial genome using CRISPR/Cas9, ACS Synth. Biol., 5, 104, 10.1021/acssynbio.5b00196
Ueno, 2007, Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata, Eukaryot. Cell, 6, 1239, 10.1128/EC.00414-06
Van Ooyen, 2006, Heterologous protein production in the yeast Kluyveromyces lactis, FEMS Yeast Res., 6, 381, 10.1111/j.1567-1364.2006.00049.x
Vanegas, 2017, SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae, Microb. Cell Fact., 16, 25, 10.1186/s12934-017-0632-x
Verbeke, 2013, Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains, Biotechnol. Lett., 35, 571, 10.1007/s10529-012-1107-0
Verwaal, 2017, CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae, Yeast.
Vigentini, 2017, CRISPR/Cas9 system as a valuable genome editing tool for wine yeasts with application to decrease urea production, Front. Microbiol., 8, 2194, 10.3389/fmicb.2017.02194
Vogl, 2013, New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris, Curr. Opin. Biotechnol., 24, 1094, 10.1016/j.copbio.2013.02.024
de Vries, 2017, CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus, Microb. Cell Fact., 16, 222, 10.1186/s12934-017-0835-1
Vyas, 2015, A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families, Sci. Adv., 1, e1500248, 10.1126/sciadv.1500248
Wagner, 2015, Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances, Fungal Genet. Biol., 1
Walsh, 2010, Post-translational modifications of protein biopharmaceuticals, Drug Discov. Today, 15, 773, 10.1016/j.drudis.2010.06.009
Walter, 2016, CRISPR-Cas-Assisted Multiplexing (CAM): simple same-day multi-locus engineering in yeast, J. Cell Physiol., 231, 2563, 10.1002/jcp.25375
Wang, 1999, Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n- alkane-assimilating yeast Yarrowia lipolytica, J. Bacteriol., 181, 5140, 10.1128/JB.181.17.5140-5148.1999
Watkins-Chow, 2017, Highly efficient Cpf1-mediated gene targeting in mice following high concentration pronuclear injection, G3 (Bethesda), 7, 719, 10.1534/g3.116.038091
Weninger, 2015, A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris, FEMS Yeast Res., 15, fov082, 10.1093/femsyr/fov082
Weninger, 2016, Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris, J. Biotechnol., 235, 139, 10.1016/j.jbiotec.2016.03.027
Weninger, 2016, Key methods for synthetic biology: genome engineering and DNA assembly, 101
Weninger, 2017, Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers, J. Cell. Biochem.
Werren, 1997, Biology of Wolbachia, Annu. Rev. Entomol., 124, 587, 10.1146/annurev.ento.42.1.587
Willis, 2011, Studying G2 DNA damage checkpoints using the fission yeast Schizosaccharomyces pombe, Methods Mol. Biol, 782, 1, 10.1007/978-1-61779-273-1_1
Wong, 2017, YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica, Metab. Eng. Commun., 5, 68, 10.1016/j.meteno.2017.09.001
Xie, 2015, Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proc. Natl. Acad. Sci. U. S. A., 112, 3570, 10.1073/pnas.1420294112
Yurimoto, 2011, Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis, Int. J. Microbiol., 2011, 101298, 10.1155/2011/101298
Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052
Zeeman, 2003, The acetyl co-enzyme a synthetase genes of Kluyveromyces lactis, Yeast, 20, 13, 10.1002/yea.936
Zeevi, 2014, Molecular dissection of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters, Genome Res., 24, 1991, 10.1101/gr.179259.114
Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038
Zhang, 2014, Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease, Appl. Environ. Microbiol., 80, 7694, 10.1128/AEM.02310-14
Zhu, 2009, A systematical investigation on the genetic stability of multi-copy Pichia pastoris strains, Biotechnol. Lett., 31, 679, 10.1007/s10529-009-9917-4
Zischewski, 2016, Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases, Biotechnol. Adv., 35, 95, 10.1016/j.biotechadv.2016.12.003