Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture

Molecular Phylogenetics and Evolution - Tập 65 - Trang 339-344 - 2012
David R. Smith1, Jimeng Hua2, Robert W. Lee2, Patrick J. Keeling1
1Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
2Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2

Tài liệu tham khảo

Andolfatto, 2005, Adaptive evolution of non-coding DNA in Drosophila, Nature, 437, 1149, 10.1038/nature04107 Blouin, 2011, Porphyra: a marine crop shaped by stress, Trends Plant Sci., 16, 29, 10.1016/j.tplants.2010.10.004 Blouin, 2007, Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kützing for use in integrated multi-trophic aquaculture (IMTA), Aquaculture, 270, 77, 10.1016/j.aquaculture.2007.03.002 Brodie, 2008, Ulva umbilicalis L. and Porphyra umbilicalis Kütz. (Rhodophyta, Bangiaceae): a molecular and morphological redescription of the species, with a typification update, Taxon, 57, 1328, 10.1002/tax.574022 Burger, 1999, Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea: cyanobacterial introns and shared ancestry of red and green algae, Plant Cell, 11, 1675, 10.1105/tpc.11.9.1675 Burki, 2012, The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins, Proc. Roy. Soc. B., 279, 2246, 10.1098/rspb.2011.2301 Choi, 2008, Inheritance pattern of chloroplast and mitochondrial genomes in artificial hybrids of Porphyra yezoensis (Rhodophyta), Fisheries Sci., 74, 822, 10.1111/j.1444-2906.2008.01594.x Drouin, 2008, Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants, Mol. Phylogenet. Evol., 49, 827, 10.1016/j.ympev.2008.09.009 Edgar, 2004, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340 Goldman, 1994, A codon-based model of nucleotide substitution for protein-coding DNA sequences, Mol. Biol. Evol., 11, 725 Hershberg, 2008, Selection on codon bias, Annu. Rev. Genet., 42, 287, 10.1146/annurev.genet.42.110807.091442 Hua, 2012, Similar relative mutation rates in the three genetic compartments of Mesostigma and Chlamydomonas, Protist, 163, 105, 10.1016/j.protis.2011.04.003 Keeling, 2010, The endosymbiotic origin, diversification and fate of plastids, Philos. Trans. Roy. Soc. B., 365, 729, 10.1098/rstb.2009.0103 Kimura, 1983 Klein, 2003, Identification of north-western Atlantic Porphyra (Bangiaceae, Bangiales) based on sequence variation in nuclear SSU and plastid rbcL genes, Phycologia, 42, 109, 10.2216/i0031-8884-42-2-109.1 Kondrashov, 2010, Measurements of spontaneous rates of mutations in the recent past and the near future, Philos. Trans. Roy. Soc. B, 365, 1169, 10.1098/rstb.2009.0286 Leliaert, 2012, Phylogeny and molecular evolution of the green algae, Crit. Rev. Plant Sci., 31, 1, 10.1080/07352689.2011.615705 Li, 1997 Librado, 2009, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 25, 1451, 10.1093/bioinformatics/btp187 Lindstrom, 2003, RbcL gene sequences reveal relationships among north-east Pacific species of Porphyra (Bangiales, Rhodophyta) and a new species, P. aestivalis, Phycol. Res., 51, 211, 10.1111/j.1440-1835.2003.tb00189.x Lynch, 2007 Lynch, 2006, Mutation pressure and the evolution of organelle genomic architecture, Science, 311, 1727, 10.1126/science.1118884 Milstein, 2008, Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the eastern coast of South America, BMC Evol. Biol., 8, 308, 10.1186/1471-2148-8-308 Mitman, 1994, Meiosis, blade development, and sex determination in Porphyra purpurea (Rhodophyta), J. Phycol., 30, 147, 10.1111/j.0022-3646.1994.00147.x Mower, 2007, Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants, BMC Evol. Biol., 7, 135, 10.1186/1471-2148-7-135 Mumford, 1988, Porphyra as food: cultivation and economics, 87 Nei, 1987 Niwa, 2010, Interspecific hybridization in the haploid blade-forming marine crop Porphyra (Bangiales, Rhodophyta): occurrence of allodiploidy in surviving F1 gametophytic blades, J. Phycol., 46, 693, 10.1111/j.1529-8817.2010.00853.x Palmer, 1988, Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence, J. Mol. Evol., 28, 87, 10.1007/BF02143500 Popescu, 2007, Mitochondrial genome sequence evolution in Chlamydomonas, Genetics, 175, 819, 10.1534/genetics.106.063156 Reith, 1995, Complete nucleotide sequence of the Porphyra purpurea chloroplast genome, Plant Mol. Biol. Rep., 13, 333, 10.1007/BF02669187 Robba, 2006, Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta), Am. J. Bot., 93, 1101, 10.3732/ajb.93.8.1101 Saunders, 2004, Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data, Am. J. Bot., 91, 1494, 10.3732/ajb.91.10.1494 Sloan, 2012, Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates, PLoS Biol., 10, e1001241, 10.1371/journal.pbio.1001241 Sloan, 2008, Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA, Mol. Biol. Evol., 25, 243, 10.1093/molbev/msm266 Smith, 2012, Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids, J. Eukaryot. Microbiol., 59, 181, 10.1111/j.1550-7408.2011.00601.x Smith, 2010, Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis, Mol. Biol. Evol., 27, 2244, 10.1093/molbev/msq110 Sutherland, 2011, A new look at an ancient order: generic revision of the Bangiales (Rhodophyta) 1, J. Phycol., 47, 1131, 10.1111/j.1529-8817.2011.01052.x Teasdale, 2010, Genetic variation and biogeographical boundaries within the red alga Porphyra umbilicalis (Bangiales, Rhodophyta), Bot. Mar., 53, 417, 10.1515/bot.2010.050 Teich, 2007, Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses, Protist, 158, 263, 10.1016/j.protis.2006.12.004 Verbruggen, 2010, Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life, BMC Evol. Biol., 10, 16, 10.1186/1471-2148-10-16 Wolfe, 1987, Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs, Proc. Natl. Acad. Sci. USA, 84, 9054, 10.1073/pnas.84.24.9054 Yang, 2007, PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol., 24, 1586, 10.1093/molbev/msm088