Synergistically Interactive Pyridinic‐N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution

Angewandte Chemie - International Edition - Tập 59 Số 23 - Trang 8982-8990 - 2020
Di Zhao1,2, Kaian Sun1,3,2, Weng‐Chon Cheong1, Lirong Zheng4, Chao Zhang1, Shoujie Liu1, Xing Cao1, Konglin Wu1, Yuan Pan1, Zewen Zhuang1, Botao Hu1, Dingsheng Wang1, Qing Peng1, Chen Chen1, Yadong Li1
1Department of Chemistry, Tsinghua University, Beijing 100084, China
2these authors contributed equally to this work
3State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
4Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Tóm tắt

AbstractFor electrocatalysts for the hydrogen evolution reaction (HER), encapsulating transition metal phosphides (TMPs) into nitrogen‐doped carbon materials has been known as an effective strategy to elevate the activity and stability. Yet still, it remains unclear how the TMPs work synergistically with the N‐doped support, and which N configuration (pyridinic N, pyrrolic N, or graphitic N) contributes predominantly to the synergy. Here we present a HER electrocatalyst (denoted as MoP@NCHSs) comprising MoP nanoparticles encapsulated in N‐doped carbon hollow spheres, which displays excellent activity and stability for HER in alkaline media. Results of experimental investigations and theoretical calculations indicate that the synergy between MoP and the pyridinic N can most effectively promote the HER in alkaline media.

Từ khóa


Tài liệu tham khảo

 

10.1021/jacs.7b01530

10.1126/science.1211934

10.1126/science.aad4998

10.1021/jacs.8b01548

10.1021/jacs.6b11291

 

10.1021/jacs.7b12968

10.1002/adma.201602441

 

10.1002/anie.201411450

10.1002/ange.201411450

10.1038/ncomms11204

10.1002/anie.201504376

10.1002/ange.201504376

10.1021/jacs.7b12420

 

10.1021/jacs.5b07924

10.1002/anie.201311111

10.1002/ange.201311111

10.1038/nnano.2015.340

10.1002/anie.201409524

10.1002/ange.201409524

 

10.1002/adma.201800005

10.1038/ncomms14969

10.1126/sciadv.1501122

 

10.1002/adfm.201706523

10.1002/adma.201401692

10.1039/C4EE00957F

10.1002/aenm.201801258

10.1002/anie.201408222

10.1002/ange.201408222

10.1002/anie.201604315

10.1002/ange.201604315

10.1002/anie.201808929

10.1002/ange.201808929

10.1039/C5CS00434A

10.1002/anie.201901409

10.1002/ange.201901409

10.1039/C6EE03768B

10.1039/C5EE02179K

10.1002/anie.201702430

10.1002/ange.201702430

10.1002/anie.201610119

10.1002/ange.201610119

 

10.1021/ja210924t

10.1002/anie.201410050

10.1002/ange.201410050

10.1039/C4CP01455C

10.1016/j.carbon.2011.08.046

10.1007/BF00808333

10.1021/ja5026529

10.1038/nmat3700

10.1021/jacs.6b00858

10.1002/adma.201705916

 

10.1021/acscatal.6b01786

Li O. L., 2019, Catal. Today

 

10.1016/j.jpowsour.2010.04.019

10.1016/j.jpowsour.2010.10.018

10.1002/adfm.201800499

10.1002/adma.200801306

10.1038/nnano.2016.304

10.1038/376238a0

10.1002/anie.201710556

10.1002/ange.201710556

10.1103/PhysRevB.50.17953

Henkelman G., 2000, J. Chem. Phys., 140, 214106

10.1149/1.1856988