Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap

Operations Research Perspectives - Tập 6 - Trang 100125 - 2019
Luiz Henrique Cherri1,2, Maria Antónia Carravilla3, Cristina Ribeiro3, Franklina Maria Bragion Toledo2
1Optimized Decision Making (ODM), São Carlos - SP, Brasil
2Universidade de São Paulo, São Carlos - SP, Brasil
3INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal

Tài liệu tham khảo

Abeysooriya, 2018, Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation, Int J Product Econ, 195, 12, 10.1016/j.ijpe.2017.09.014 Alvarez-Valdes, 2013, A branch & bound algorithm for cutting and packing irregularly shaped pieces, Int J Product Econ, 145, 463, 10.1016/j.ijpe.2013.04.007 Baldacci, 2014, Algorithms for nesting with defects, Discrete Appl Math, 163, Part 1, 17, 10.1016/j.dam.2012.03.026 Beldiceanu, 2007, Global constraint catalogue: past, present and future, Constraints, 12, 21, 10.1007/s10601-006-9010-8 Bennell, 2015, Optimal clustering of a pair of irregular objects, J Global Optim, 61, 497, 10.1007/s10898-014-0192-0 Bennell, 2009, A tutorial in irregular shape packing problems, J Operat Res Soc, 60, S93, 10.1057/jors.2008.169 Bennell, 2018, A beam search approach to solve the convex irregular bin packing problem with guillotine cuts, Eur J Operat Res, 270, 89, 10.1016/j.ejor.2018.03.029 Bennell, 2008, The geometry of nesting problems: a tutorial, Eur J Operat Res, 184, 397, 10.1016/j.ejor.2006.11.038 Carravilla, 2003, Solving nesting problems with non-convex polygons by constraint logic programming, Int Trans Operat Res, 10, 651, 10.1111/1475-3995.00434 Cherri, 2018, An innovative data structure to handle the geometry of nesting problems, Int J Product Res, 56, 7085, 10.1080/00207543.2017.1413256 Cherri, 2018, Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations, J Global Optim, 72, 89, 10.1007/s10898-018-0638-x Cherri, 2016, Robust mixed-integer linear programming models for the irregular strip packing problem, Eur J Operat Res, 253, 570, 10.1016/j.ejor.2016.03.009 Clautiaux, 2008, A new constraint programming approach for the orthogonal packing problem, Comput Operat Res, 35, 944, 10.1016/j.cor.2006.05.012 Dyckhoff, 1992 Dyckhoff, 1985, Trim loss and related problems, Omega, 13, 59, 10.1016/0305-0483(85)90083-0 Elkeran, 2013, A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering, Eur J Operat Res, 231, 757, 10.1016/j.ejor.2013.06.020 Fischetti, 2009, Mixed-integer programming models for nesting problems, J Heur, 15, 201, 10.1007/s10732-008-9088-9 Gomes, 2006, Solving irregular strip packing problems by hybridising simulated annealing and linear programming, Eur J Operat Res, 171, 811, 10.1016/j.ejor.2004.09.008 Kovács, 2008, A global constraint for total weighted completion time for cumulative resources, Eng Appl Artif Intell, 21, 691, 10.1016/j.engappai.2008.03.004 Leão, 2016, A semi-continuous MIP model for the irregular strip packing problem, Int J Product Res, 54, 712, 10.1080/00207543.2015.1041571 Leão, 2019, Irregular packing problems: a review of mathematical models, Eur J Operat Res, 10.1016/j.ejor.2019.04.045 Martinez-Sykora, 2015, Constructive procedures to solve 2-dimensional bin packing problems with irregular pieces and guillotine cuts, Omega, 52, 15, 10.1016/j.omega.2014.10.007 Mundim, 2017, A biased random key genetic algorithm for open dimension nesting problems using no-fit raster, Expert Syst Appl, 81, 358, 10.1016/j.eswa.2017.03.059 Ribeiro, 2008, A global constraint for nesting problems, Artif Intell Rev, 30, 99, 10.1007/s10462-009-9120-y Salas, 2014, The non-overlapping constraint between objects described by non-linear inequalities, 8656, 672 Saldanha, 2003, Solving set partitioning problems with global constraint propagation, 2902, 101 Sato, 2019, Raster penetration map applied to the irregular packing problem, Eur J Operat Res, 10.1016/j.ejor.2019.06.008 Song, 2014, Column generation and sequential heuristic procedure, J Operat Res Soc, 65, 1037, 10.1057/jors.2013.44 Toledo, 2013, The dotted-board model: a new MIP model for nesting irregular shapes, Int J Product Econ, 145, 478, 10.1016/j.ijpe.2013.04.009 Trojet, 2011, Project scheduling under resource constraints: application of the cumulative global constraint in a decision support framework, Comput Ind Eng, 61, 357, 10.1016/j.cie.2010.08.014 Valle, 2012, Heuristics for two-dimensional knapsack and cutting stock problems with items of irregular shape, Expert Syst Appl, 39, 12589, 10.1016/j.eswa.2012.05.025 Wang, 2007, Resource portfolio planning of make-to-stock products using a constraint programming-based genetic algorithm, Omega, 35, 237, 10.1016/j.omega.2005.06.001 Wäscher, 2007, An improved typology of cutting and packing problems, Eur J Operat Res, 183, 1109, 10.1016/j.ejor.2005.12.047