The use of iron ore tailings obtained from the Germano dam in the production of a sustainable concrete

Journal of Cleaner Production - Tập 278 - Trang 123929 - 2021
Fernando Nóbrega Mendes Protasio1, Roberto Ribeiro de Avillez2, Sônia Letichevsky2, Flávio de Andrade Silva1
1Department of Civil and Environmental Engineering, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro – RJ, Brazil
2Department of Chemical and Materials Engineering, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro – RJ, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

2004, 1

Al, 2018, Long term durability properties of concrete modified with metakaolin and polymer admixture, Construct. Build. Mater., 172, 41, 10.1016/j.conbuildmat.2018.03.215

Anjos, 2012, Avaliação da hidratação de pastas cimentícias com elevados teores de adições minerais. (“ Evaluation of high volume mineral additions pastes hydration”), Eng. Civil. Number, 44, 41

Antiohos, 2014, Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness, Cement Concr. Res., 61–62, 20, 10.1016/j.cemconres.2014.04.001

Antoniassi, 2010

1984

1987

1998

2005

2010

2018

Benezet, 1999, Grinding and pozzolanic reactivity of quartz powders, Powder Technol., 105, 167, 10.1016/S0032-5910(99)00133-3

Bezerra, 2017

Bian, 2012, The challenges of reusing mining and mineral-processing wastes, Science, 337, 702, 10.1126/science.1224757

Carrasco, 2017, Characterization of mortars with iron ore tailings using destructive and nondestructive tests, Construct. Build. Mater., 131, 31, 10.1016/j.conbuildmat.2016.11.065

Carvalho, 2017, Mining industry and sustainable development: time for change, Food Energy Secur, 6, 61, 10.1002/fes3.109

Che, 2019, Utilization of iron tailings as fine aggregates in low-grade cement concrete pavement, IOP Conf. Ser. Mater. Sci. Eng., 479, 10.1088/1757-899X/479/1/012053

Cidade, 2018, Investigation of the thermal microstructural effects of CO2 laser engraving on agate via X-ray microtomography, Optic Laser. Technol., 104, 56, 10.1016/j.optlastec.2018.02.002

Cordeiro, 2006

Diehl, 2019, Wise uranium project, Tailings Dam Saf

Diehl, 2019, Wise uranium project, Tailings Dam Saf

Dweck, 2000, Hydration of a Portland cement blended with calcium carbonate, Thermochim. Acta, 346, 105, 10.1016/S0040-6031(99)00369-X

Dweck, 2000, Hydration of a Portland cement blended with calcium carbonate, Thermochim. Acta, 346, 105, 10.1016/S0040-6031(99)00369-X

Edwards, 2020, Global Cement News, Glob. Cem. Mag., 41, 23

Filho, 2017, Atividade pozolânica de adições minerais para cimento Portland (Parte II): Índice de atividade pozolânica com cimento Portland (IAP), difração de raios-X (DRX) e termogravimetria (TG/DTG), Rev. Mater., 22

Fordham, 1985, A simple thermogravimetric study of hydrated cement, Cement Concr. Res., 15, 141, 10.1016/0008-8846(85)90019-5

de Freitas, 2017, Caracterização e análise estrutural da hidroxisodalita sintetizada a partir de amostras de solo amazônico, Cerâmica, 57, 281, 10.1590/S0366-69132011000300005

Gagg, 2014, Cement and concrete as an engineering material: an historic appraisal and case study analysis, Eng. Fail. Anal., 40, 114, 10.1016/j.engfailanal.2014.02.004

Gobbo, 2009

Golewski, 2018, Green concrete composite incorporating fl y ash with high strength and fracture toughness, J. Clean. Prod., 172, 218, 10.1016/j.jclepro.2017.10.065

Golewski, 2019, Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems, Construct. Build. Mater., 213, 142, 10.1016/j.conbuildmat.2019.04.071

Golewski, 2019, Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation ( DIC ) method, Measurement, 135, 96, 10.1016/j.measurement.2018.11.032

Haach, 2011, Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars, Construct. Build. Mater., 25, 2980, 10.1016/j.conbuildmat.2010.11.011

He, 2016, Effect of further water curing on compressive strength and microstructure of CO2-cured concrete, Cement Concr. Compos., 72, 80, 10.1016/j.cemconcomp.2016.05.026

He, 2016, Effect of further water curing on compressive strength and microstructure of CO2-cured concrete, Cement Concr. Compos., 72, 80, 10.1016/j.cemconcomp.2016.05.026

Hoshino, 2007, XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement, J. Adv. Concr. Technol., 4, 357, 10.3151/jact.4.357

Huang, 2013, Development of green engineered cementitious composites using iron ore tailings as aggregates, Construct. Build. Mater., 44, 757, 10.1016/j.conbuildmat.2013.03.088

Instituto Brasileiro de Mineração (IBRAM)

Ismail, 2013, Engineering properties of treated recycled concrete aggregate ( RCA ) for structural applications, Construct. Build. Mater., 44, 464, 10.1016/j.conbuildmat.2013.03.014

Jamieson, 2011, Geochemistry and mineralogy of solid mine waste: essential knowledge for predicting environmental impact, Elements, 7, 381, 10.2113/gselements.7.6.381

Kim, 2019, Microstructure characterization of cement paste from micro-CT and correlations with mechanical properties evaluated from virtual and real experiments, Mater. Char., 155, 10.1016/j.matchar.2019.109807

Kim, 2019, Microstructure characterization of cement paste from micro-CT and correlations with mechanical properties evaluated from virtual and real experiments, Mater. Char., 155, 10.1016/j.matchar.2019.109807

Kinast, 2000

Li, 2010, Innovative methodology for comprehensive utilization of iron ore tailings. Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting, J. Hazard Mater., 174, 71, 10.1016/j.jhazmat.2009.09.018

Lorenzoni, 2017

Mehta, 2008

Meyer, 2009, The greening of the concrete industry, Cement Concr. Compos., 31, 601, 10.1016/j.cemconcomp.2008.12.010

De Nazaré

Palombini, 2016, Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography, Mater. Char., 120, 357, 10.1016/j.matchar.2016.09.022

Palombini, 2016, Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography, Mater. Char., 120, 357, 10.1016/j.matchar.2016.09.022

Quarcioni, 2015, Indirect and direct Chapelle’s methods for the determination of lime consumption in pozzolanic materials, Rev. IBRACON Estruturas e Mater., 8, 1, 10.1590/S1983-41952015000100002

Quarcioni, 2015, Indirect and direct Chapelle’s methods for the determination of lime consumption in pozzolanic materials, Rev. IBRACON Estruturas e Mater., 8, 1, 10.1590/S1983-41952015000100002

Ramachandran, 1971, Kinetics of hydration of tricalcium silicate in presence of calcium chloride by thermal methods, Thermochim. Acta, 2, 41, 10.1016/0040-6031(71)85023-2

Ramachandran, 2000

Rampacek, 1982, An overview of mining and mineral processing waste as a resource, Resour. Conserv., 9, 75, 10.1016/0166-3097(82)90063-3

Rashad, 2013, Metakaolin as cementitious material : history , scours , production and composition – a comprehensive overview, Construct. Build. Mater., 41, 303, 10.1016/j.conbuildmat.2012.12.001

Raverdy, 1980, Appréciation de l’activité pouzzolanique de constituents secondaires, 6

Rocha, 2016, Cenários de formação e evolução de rupturas em barragens de rejeitos (Dam Break), 1

Rostami, 2012, Microstructure of cement paste subject to early carbonation curing, Cement Concr. Res., 42, 186, 10.1016/j.cemconres.2011.09.010

Rostami, 2012, Microstructure of cement paste subject to early carbonation curing, Cement Concr. Res., 42, 186, 10.1016/j.cemconres.2011.09.010

Safiuddin, 2011, Efficacy of ASTM saturation techniques for measuring the water absorption of concrete, Arabian J. Sci. Eng., 36, 761, 10.1007/s13369-011-0080-6

De Schutter, 2004, Evaluation of water absorption of concrete as a measure for resistance against carbonation and chloride migration, Mater. Struct., 37, 591, 10.1007/BF02483288

Sha, 1999, Differential scanning calorimetry study of ordinary Portland cement, Cement Concr. Res., 29, 1487, 10.1016/S0008-8846(99)00128-3

Shettima, 2016, Evaluation of iron ore tailings as replacement for fine aggregate in concrete, Construct. Build. Mater., 120, 72, 10.1016/j.conbuildmat.2016.05.095

Siddique, 2012, Properties of concrete containing ground granulated blast furnace slag ( GGBFS ) at elevated temperatures, J. Adv. Res., 3, 45, 10.1016/j.jare.2011.03.004

Simeoni, 2018, vol. 1985

Stock, 2002, X-ray microtomography (microCT) of the progression of sulfate attack of cement paste, Cement Concr. Res., 32, 1673, 10.1016/S0008-8846(02)00814-1

Tashima, 2006

Tian, 2016, Experimental study on the properties of concrete mixed with iron ore tailings, Ann. Mater. Sci. Eng., 1

Toby, 2006, R factors in Rietveld analysis: how good is good enough?, Powder Diffr., 21, 67, 10.1154/1.2179804

Uchechukwu, 2014, Evaluation of the iron ore tailings from itakpe in Nigeria as concrete material, Adv. Mater., 3

United States Geological Survey (Usgs), 2020

Vacca, 2008

Vale

Venkatarama Reddy, 2008, Influence of sand grading on the characteristics of mortars and soil-cement block masonry, Construct. Build. Mater., 22, 1614, 10.1016/j.conbuildmat.2007.06.014

Yu

Yu, 2012, Relationships between compressive strength and microstructure in mortars with iron ore tailings as fine aggregate, Appl. Mech. Mater., 188, 211, 10.4028/www.scientific.net/AMM.188.211

Zhang, 2006, Current situation and comprehensive utilization of iron ore tailing resources, J. Min. Sci., 42, 403

Zhao, 2014, Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete, Construct. Build. Mater., 50, 540, 10.1016/j.conbuildmat.2013.10.019

Zhu, 2015, The influences of iron ore tailings as fine aggregate on the strength of ultra-high performance concrete, Ann. Mater. Sci. Eng., 1