Large-scale phase retrieval
Tóm tắt
High-throughput computational imaging requires efficient processing algorithms to retrieve multi-dimensional and multi-scale information. In computational phase imaging, phase retrieval (PR) is required to reconstruct both amplitude and phase in complex space from intensity-only measurements. The existing PR algorithms suffer from the tradeoff among low computational complexity, robustness to measurement noise and strong generalization on different modalities. In this work, we report an efficient large-scale phase retrieval technique termed as LPR. It extends the plug-and-play generalized-alternating-projection framework from real space to nonlinear complex space. The alternating projection solver and enhancing neural network are respectively derived to tackle the measurement formation and statistical prior regularization. This framework compensates the shortcomings of each operator, so as to realize high-fidelity phase retrieval with low computational complexity and strong generalization. We applied the technique for a series of computational phase imaging modalities including coherent diffraction imaging, coded diffraction pattern imaging, and Fourier ptychographic microscopy. Extensive simulations and experiments validate that the technique outperforms the existing PR algorithms with as much as 17dB enhancement on signal-to-noise ratio, and more than one order-of-magnitude increased running efficiency. Besides, we for the first time demonstrate ultra-large-scale phase retrieval at the 8K level (
$$7680\times 4320$$
pixels) in minute-level time.
Tài liệu tham khảo
H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L.P. Hariri, D.C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso et al., Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12(9), 540–547 (2018)
A. Lombardini, V. Mytskaniuk, S. Sivankutty, E.R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski et al., High-resolution multimodal flexible coherent Raman endoscope. Light. Sci. Appl. 7(1), 1–8 (2018)
G. Zheng, R. Horstmeyer, C. Yang, Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7(9), 739–745 (2013)
J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He et al., Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photonics 13(11), 809–816 (2019)
W.-Q. Wang, Space-time coding MIMO-OFDM SAR for high-resolution imaging. IEEE T. Geosci. Remote 49(8), 3094–3104 (2011)
D.J. Brady, M.E. Gehm, R.A. Stack, D.L. Marks, D.S. Kittle, D.R. Golish, E. Vera, S.D. Feller, Multiscale gigapixel photography. Nature 486(7403), 386–389 (2012)
H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L.A. Bentolila, A. Ozcan, Computational out-of-focus imaging increases the space-bandwidth product in lens-based coherent microscopy. Optica 3(12), 1422–1429 (2016)
A.W. Lohmann, R.G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, Space-bandwidth product of optical signals and systems. JOSA A 13(3), 470–473 (1996)
X. Yuan, Y. Liu, J. Suo, Q. Dai, Plug-and-play algorithms for large-scale snapshot compressive imaging. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1447–1457 (2020)
Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Proc. Mag. 32(3), 87–109 (2015)
J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742), 342–344 (1999)
E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. A. 39(2), 277–299 (2015)
O. Katz, P. Heidmann, M. Fink, S. Gigan, Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8(10), 784–790 (2014)
R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)
J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Optics 21(15), 2758–2769 (1982)
E.J. Candes, T. Strohmer, V. Voroninski, Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pur. Appl. Math. 66(8), 1241–1274 (2013)
L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory and algorithms. IEEE T. Inform. Theory 61(4), 1985–2007 (2015)
Y. Chen, E. Candes, Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: International Conference on Neural Information Processing Systems (NIPS), pp. 739–747 (2015)
W.-J. Zeng, H.-C. So, Coordinate descent algorithms for phase retrieval. Signal Process. 169, 107418 (2020)
V. Katkovnik, Phase retrieval from noisy data based on sparse approximation of object phase and amplitude. arXiv preprint arXiv:1709.01071 (2017)
C.A. Metzler, A. Maleki, R.G. Baraniuk, BM3D-PRGAMP: Compressive phase retrieval based on BM3D denoising. In: International Conference on Image Processing (ICIP), pp. 2504–2508 (2016). IEEE
S. Chowdhury, M. Chen, R. Eckert, D. Ren, F. Wu, N. Repina, L. Waller, High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica 6(9), 1211–1219 (2019)
Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, A. Ozcan, Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7(2), 17141–17141 (2018)
A. Kappeler, S. Ghosh, J. Holloway, O. Cossairt, A. Katsaggelos, Ptychnet: CNN based Fourier ptychography. In: International Conference on Image Processing (ICIP), pp. 1712–1716 (2017). IEEE
C. Metzler, P. Schniter, A. Veeraraghavan, et al: prDeep: robust phase retrieval with a flexible deep network. In: International Conference on Machine Learning (ICML), pp. 3501–3510 (2018). PMLR
S.V. Venkatakrishnan, C.A. Bouman, B. Wohlberg, Plug-and-play priors for model based reconstruction. In: Global Conference on Signal and Information Processing (GlobalSIP), pp. 945–948 (2013). IEEE
X. Liao, H. Li, L. Carin, Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing. SIAM J. Imaging Sci. 7(2), 797–823 (2014)
X. Yuan, Generalized alternating projection based total variation minimization for compressive sensing. In: International Conference on Image Processing (ICIP), pp. 2539–2543 (2016). IEEE
J.M. Bioucas-Dias, M.A. Figueiredo, A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE T. Image Process. 16(12), 2992–3004 (2007)
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Y. Liu, X. Yuan, J. Suo, D.J. Brady, Q. Dai, Rank minimization for snapshot compressive imaging. IEEE T. Pattern Anal. 41(12), 2990–3006 (2018)
T. Goldstein, C. Studer, Phasemax: Convex phase retrieval via basis pursuit. IEEE T. Inform. Theory 64(4), 2675–2689 (2018)
O. Dhifallah, C. Thrampoulidis, Y.M. Lu, Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1071–1077 (2017). IEEE
Z. Yuan, H. Wang, Phase retrieval via reweighted Wirtinger flow. Appl. Optics 56(9), 2418–2427 (2017)
G. Wang, G.B. Giannakis, Y.C. Eldar, Solving systems of random quadratic equations via truncated amplitude flow. IEEE T. Inform. Theory 64(2), 773–794 (2017)
G. Wang, G.B. Giannakis, Y. Saad, J. Chen, Phase retrieval via reweighted amplitude flow. IEEE T. Signal Proces. 66(11), 2818–2833 (2018)
W.-J. Zeng, H.-C. So, Coordinate descent algorithms for phase retrieval. arXiv preprint arXiv:1706.03474 (2017)
K. Wei, Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study. Inverse Probl. 31(12), 125008 (2015)
R. Chandra, T. Goldstein, C. Studer, Phasepack: A phase retrieval library. In: International Conference on Sampling Theory and Applications (SampTA), pp. 1–5 (2019). IEEE
Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE T. Image Process. 13(4), 600–612 (2004)
E. Agustsson, R. Timofte, Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 126–135 (2017)
Choksawatdikorn: Onion cells under microscope view. https://www.shutterstock.com/zh/image-photo/onion-cells-microscope-1037260501. [Online; accessed 20-June-2021] (2021)
J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science 348(6234), 530–535 (2015)
Y.H. Lo, L. Zhao, M. Gallagher-Jones, A. Rana, J.J. Lodico, W. Xiao, B. Regan, J. Miao, In situ coherent diffractive imaging. Nat. Commun. 9(1), 1–10 (2018)
Choksawatdikorn: Blood cells under microscope view for histology education. https://www.shutterstock.com/zh/image-photo/blood-cells-under-microscope-view-histology-1102617128. [Online; accessed 5-November-2020] (2020)
L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, Q. Dai, Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt. Express 23(4), 4856–4866 (2015)
M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE T. Image Process. 15(12), 3736–3745 (2006)
K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE T. Image Process. 26(7), 3142–3155 (2017)
K. Zhang, W. Zuo, L. Zhang, FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE T. Image Process. 27(9), 4608–4622 (2018)
S.H. Chan, X. Wang, O.A. Elgendy, Plug-and-play admm for image restoration: Fixed-point convergence and applications. IEEE Transact. Comput Imaging 3(1), 84–98 (2016)
P. Nair, R.G. Gavaskar, K.N. Chaudhury, Fixed-point and objective convergence of plug-and-play algorithms. IEEE Transactions on Computational Imaging 7, 337–348 (2021)
S. Jiang, J. Zhu, P. Song, C. Guo, Z. Bian, R. Wang, Y. Huang, S. Wang, H. Zhang, G. Zheng, Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip 20(6), 1058–1065 (2020)
K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schönlieb, H. Huang, Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In: International Conference on Machine Learning (ICML), pp. 10158–10169 (2020). PMLR
W. Luo, W. Alghamdi, Y.M. Lu, Optimal spectral initialization for signal recovery with applications to phase retrieval. IEEE T. Signal Proces. 67(9), 2347–2356 (2019)
