Deterministic skill of ENSO predictions from the North American Multimodel Ensemble

Anthony G. Barnston1, Michael K. Tippett2,3, Meghana Ranganathan4, Michelle L. L’Heureux5
1International Research Institute for Climate and Society, The Earth Institute of Columbia University, New York, USA
2Department of Meteorology, Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah, Saudi Arabia
3Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA
4Swarthmore College, Swarthmore, USA
5Climate Prediction Center, National Weather Service, National Oceanic and Atmospheric Administration, National Centers for Environmental Prediction, College Park, USA

Tóm tắt

Hindcasts and real-time predictions of the east-central tropical Pacific sea surface temperature (SST) from the North American Multimodel Ensemble (NMME) system are verified for 1982–2015. Skill is examined using two deterministic verification measures: mean squared error skill score (MSESS) and anomaly correlation. Verification of eight individual models shows somewhat differing skills among them, with some models consistently producing more successful predictions than others. The skill levels of MME predictions are approximately the same as the two best performing individual models, and sometimes exceed both of them. A decomposition of the MSESS indicates the presence of calibration errors in some of the models. In particular, the amplitudes of some model predictions are too high when predictability is limited by the northern spring ENSO predictability barrier and/or when the interannual variability of the SST is near its seasonal minimum. The skill of the NMME system is compared to that of the MME from the IRI/CPC ENSO prediction plume, both for a comparable hindcast period and also for a set of real-time predictions spanning 2002–2011. Comparisons are made both between the MME predictions of each model group, and between the average of the skills of the respective individual models in each group. Acknowledging a hindcast versus real-time inconcsistency in the 2002–2012 skill comparison, the skill of the NMME is slightly higher than that of the prediction plume models in all cases. This result reflects well on the NMME system, with its large total ensemble size and opportunity for possible complementary contributions to skill.

Từ khóa


Tài liệu tham khảo

Barnston AG, Tippett MK (2013) Predictions of Nino3.4 SST in CFSv1 and CFSv2: a diagnostic comparison. Clim Dyn 41:1–19, doi:10.1007/s00382-013-1845-2

Barnston AG, van den Dool HM, Zebiak SE, Barnett TP, Ji M, Rodenhuis DR, Cane MA, Leetmaa A, Graham NE, Ropelewski CF, Kously VE, O’Lenic EA, Livezey RE (1994) Long-lead seasonal forecasts—where do we stand? Bull Am Meteor Soc 75:2097–2114

Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmosphere-Ocean 35:367–383

Barnston AG, Glantz MH, He Y (1999) Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull Am Meteor Soc 80:217–243

Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011. Is our capability increasing? Bull Am Meteor Soc 93:631–651

Barnston AG, Tippett MK, van den Dool HM, Unger DA (2015) Toward an improved multi-model ENSO prediction. J Appl Meteor Climatol 54:1579–1595. doi:10.1175/JAMC-D-14-0188.1

Becker E, van den Dool H, Zhang Q (2014) Predictability and forecast skill in NMME. J Clim 27:5891–5906 doi:10.1175/JCLI-D-13-00597.1

Bjerknes J (1969) Atmospheric teleconnections from equatorial Pacific. Mon Weather Rev 97: 163–172

DelSole T, Nattala J, Tippett MK (2014) Skill improvement from increased ensemble size and model diversity. Geophys Res Lett 41:7331–7342. doi:10.1002/2014GL060133

Infanti JM, Kirtman BP (2016) Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J Geophys Res Atmos 121(21):12690–12701. doi:10.1002/2016JD024932

Jin E, Kinter J, Wang B, Park CK, Kang IS, Kirtman B, Kug JS, Kumar A, Luo JJ, Schem m J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664

Kharin VV, Zwiers FW (2002) Climate predictions with multimodel ensembles. J Clim 15:793–799

Kirtman BP, Min D, Infanti JM, Kinter JL, Paolino DA, Zhang Q, van den Dool H, Saha S, Mendez MP, Becker E, Peng P, Tripp P, Huang J, DeWitt DG, Tippett MK, Barnston AG, Li S, Rosati A, Schubert SD, Rienecker M, Suarez M, Li ZE, Marshak J, Lim YK, Tribbia J, Pegion K, Merry eld WJ, Denis B, Wood EF (2014) The North American Multi-Model Ensemble (NMME): Phase-1 seasonal to interannual prediction, Phase-2 toward developing intra-seasonal prediction. Bull Am Meteor Soc 95:585–601, doi:10.1175/BAMS-D-12-00050.1

Kousky VE, Higgins RW (2007) An alert classification system for monitoring and assessing the enso cycle. Weather Forecast 22:353–371

Kumar A, Chen M, Zhang L, Wang W, Xue Y, Wen C, Marx L, Huang B (2012) An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon Weather Rev 140:3003–3016, doi:10.1175/MWR-D-11-00335.1

Kumar, A, Hu ZZ, Jha B P en g P (2017) Estimating ENSO predictability based on multi-model hindcasts. Clim Dyn 48: 39. doi:10.1007/s00382-016-3060-4

L’Heureux ML, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Liberto TED, Gamble F, Gottschalck J, Halpert MS, Huang B, Mosquera-Vasquez K, Wittenberg AT (2016) Observing and predicting the 2015-16 El Niño. Bull Am Meteor Soc 98. http://journals.ametsoc.org/toc/bams/0/0.

McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745

Murphy AH (1988) Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon Weather Rev 116:2417–2424, doi:10.1175/1520-0493(1988) (116h2417:SSBOTMi2.0.CO;2)

Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy J-F, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres J-M, Thomson MC (2004) Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull Am Meteor Soc 85:853–872

Peng P, Kumar A, Van den Dool H, Barnston AG (2002) An analysis of multi-model ensemble predictions for seasonal climate anomalies. J Geophys Res 107:3657–3679. doi:10.1029/2002JD002712

Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

Ropelewski C, Halpert M (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP Climate Forecast System Reanalysis. Bull Am Meteor Soc 91:1015–1057. doi:10.1175/2010BAMS3001.1

Tippett MK, Barnston AG (2008) Skill of multi-model ENSO probability forecasts. Mon Weather Rev 136:3933–3946

Tippett MK, Barnston AG, Li S (2012) Performance of recent multimodel ENSO forecasts. J Appl Meteorol Climatol 51(3):637–654

Tippett MK, Ranganathan M, L’Heureux ML, Barnston AG and DelSole T (2017) Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble. Clim Dyn 46 (submitted)

Xue Y, Huang B, Hu ZZ, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37:2511–2539, DOI:10.1007/s00382-010-0954-4

Xue Y, Wen C, Kumar A, Balmaseda M, Fujii Y, Alves O, Martin M, Yang X, Vernieres G, Desportes C, Lee T, Ascione I, Gudgel R, Ishikawa I (2017) A real-time ocean reanalysis intercomparison project in the context of tropical Pacific observing system and ENSO monitoring. Clim Dyn. doi:10.1007/s00382-017-3535-y