Nelson algebras through Heyting ones: I

Andrzej Sendlewski1
1Institute of Mathematics, Nicholas Copernicus University, Toruń, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. Bia?ynicki-Birula and H. Rasiowa, On the representation of quasi-Boolean algebras, Bulletin de l'Acad�mie Polonaise des Sciences, Ser. Math. Astr. Phys. 5 (1957), pp. 259?261.

A. Bia?ynicki-Birula and H. Rasiowa, On constructible falsity in the constructive logic with strong negation, Colloquium Mathematicum 6 (1958), pp. 287?310.

D. Brignole and A. Monteiro, Caract�risation des algebres de Nelson par des �galit�s I and II, Proceedings of Japan Academy 43 (1967), pp. 279?283 and 284?285.

R. Cignoli, The class of Kleene algebras satisfying an interpolation property and Nelson algebras, Algebra Universalis 23 (1986), pp. 262?292.

W. H. Cornish and P. R. Fowler, Coproduts of Kleene algebras, Journal of the Australian Mathematical Society 27 (1979), pp. 209?220.

M. M. Fidel, An algebraic study of a prepositional system of Nelson, Mathematical Logic, Proceedings of the First Brazilian Conference, Marcel Dekker, New York 1978, pp. 99?117.

V. Goranko, The Craig interpolation theorem for propositional logics with strong negation, Studia Logica 44 (1985), pp. 291?317.

G. Gr�tzer, Universal Algebra, Van Nostrand, Princeton 1968.

H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon Inc. Boston 1973.

H. Herrlich, Topological functors, General Topology and Applications 4 (1974), pp. 125?142.

A. A. Markov, Constructive logic in Russian, Uspekhi Matematiceskih Nauk 5 (1950), pp. 187?188.

A. Monteiro, Construction des alg�bres de Nelson finies, Bulletin de l' Acad�mie Polonaise des Sciences, Ser. Math. Astr. Phys. 11 (1963), pp. 359?362.

A. Monteiro, Les alg�bres de Nelson semi-simple, Nota? de Logica Matematica, Inst. de Mat. Universdad Nacional del Sur, Bahia Blanca.

D. Nelson, Constructible falsity, Journal of Symbolic Logic 14 (1949), pp. 16?26.

H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bulletin of the London Mathematical Society 2 (1970), pp. 186?190.

H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proceedings of the London Mathematical Society 24 (1972), pp. 507?530.

H. A. Priestley, The construction of spaces dual to pseudo-complemented distributive lattices, Quart. Journal of Mathematics, Oxford 26 (1975), pp. 215?228.

H. A. Priestley, Ordered sets and duality for distributive lattices, Annales of Discrete Mathematics 23 (1984), pp. 39?60.

H. Rasiowa, N-lattices and constructive logics with strong negation, Fundamenta Mathematice 46 (1958), pp. 61?80.

H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, PWN Warszawa 1974.

H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN Warszawa 1970.

A. Sendlewski, Some investigations of varieties of N-lattices, Studia Logica 43 (1984), pp. 257?280.

A. Sendlewski, Topological duality for Nelson algebras and its application, Bulletin of the Section of Logic, Polish Academy of Sciences 13 (1984), pp. 215?221.

A. Sendlewski, Equationally definable classes of Nelson algebras and their connection with classes of Heyting algebras, (in Polish), Preprint of the Institute of Mathematics of Nicholas Copernicus University no 2 (1984), pp. 1?170.

D. Vakarelov, Notes on N-lattices and constructive logic with strong negation, Studia Logica 36 (1977), pp. 109?125.

O. Wyler, Top categories and categorical topology, General Topology and Applications, 1 (1971), pp. 17?28.