Adult Human Fibroblasts Are Potent Immunoregulatory Cells and Functionally Equivalent to Mesenchymal Stem Cells

Journal of Immunology - Tập 179 Số 3 - Trang 1595-1604 - 2007
Muzlifah Haniffa1,2,3, Xiaonong Wang1, Udo Holtick1, Michelle Rae1, John D. Isaacs2, Anne M. Dickinson1, Catharien M. U. Hilkens2, Matthew Collin1
1*Hematological Sciences,
2†Musculoskeletal Research Group, and
3‡Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom

Tóm tắt

Abstract

Bone marrow mesenchymal stem cells (MSC) have potent immunosuppressive properties and have been advocated for therapeutic use in humans. The nature of their suppressive capacity is poorly understood but is said to be a primitive stem cell function. Demonstration that adult stromal cells such as fibroblasts (Fb) can modulate T cells would have important implications for immunoregulation and cellular therapy. In this report, we show that dermal Fb inhibit allogeneic T cell activation by autologously derived cutaneous APCs and other stimulators. Fb mediate suppression through soluble factors, but this is critically dependent on IFN-γ from activated T cells. IFN-γ induces IDO in Fb, and accelerated tryptophan metabolism is at least partly responsible for suppression of T cell proliferation. T cell suppression is reversible, and transient exposure to Fb during activation reprograms T cells, increasing IL-4 and IL-10 secretion upon restimulation. Increased Th2 polarization by stromal cells is associated with amelioration of pathological changes in a human model of graft-vs-host disease. Dermal Fb are highly clonogenic in vitro, suggesting that Fb-mediated immunosuppression is not due to outgrowth of rare MSC, although dermal Fb remain difficult to distinguish from MSC by phenotype or transdifferentiation capacity. These results suggest that immunosuppression is a general property of stromal cells and that dermal Fb may provide an alternative and accessible source of cellular therapy.

Từ khóa


Tài liệu tham khảo

Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova, G. P. Frolova. 1968. Heterotopic of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: 230-247.

Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.

Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, et al 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42-48.

Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, S. Grisanti, A. M. Gianni. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838-3843.

Krampera, M., S. Glennie, J. Dyson, D. Scott, R. Laylor, E. Simpson, F. Dazzi. 2003. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722-3729.

Meisel, R., A. Zibert, M. Laryea, U. Gobel, W. Daubener, D. Dilloo. 2004. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619-4621.

Glennie, S., I. Soeiro, P. J. Dyson, E. W. Lam, F. Dazzi. 2005. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105: 2821-2827.

Plumas, J., L. Chaperot, M. J. Richard, J. P. Molens, J. C. Bensa, M. C. Favrot. 2005. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19: 1597-1604.

Aggarwal, S., M. F. Pittenger. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822.

Beyth, S., Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit, H. Aslan, E. Galun, J. Rachmilewitz. 2005. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105: 2214-2219.

Nauta, A. J., A. B. Kruisselbrink, E. Lurvink, R. Willemze, W. E. Fibbe. 2006. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol. 177: 2080-2087.

Krampera, M., L. Cosmi, R. Angeli, A. Pasini, F. Liotta, A. Andreini, V. Santarlasci, B. Mazzinghi, G. Pizzolo, F. Vinante, et al 2006. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24: 386-398.

Djouad, F., V. Fritz, F. Apparailly, P. Louis-Plence, C. Bony, J. Sany, C. Jorgensen, D. Noel. 2005. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen-induced arthritis. Arthritis Rheum. 52: 1595-1603.

Djouad, F., P. Plence, C. Bony, P. Tropel, F. Apparailly, J. Sany, D. Noel, C. Jorgensen. 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837-3844.

Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, D. Giunti, A. Ceravolo, F. Cazzanti, F. Frassoni, et al 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755-1761.

Yanez, R., M. L. Lamana, J. Garcia-Castro, I. Colmenero, M. Ramirez, J. A. Bueren. 2006. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24: 2582-2591.

Nauta, A. J., G. Westerhuis, A. B. Kruisselbrink, E. G. Lurvink, R. Willemze, W. E. Fibbe. 2006. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108: 2114-2120.

Tolar, J., A. J. Nauta, M. J. Osborn, A. Panoskaltsis Mortari, R. T. McElmurry, S. Bell, L. Xia, N. Zhou, M. Riddle, T. M. Schroeder, et al 2007. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25: 371-379.

Sudres, M., F. Norol, A. Trenado, S. Gregoire, F. Charlotte, B. Levacher, J. J. Lataillade, P. Bourin, X. Holy, J. P. Vernant, et al 2006. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J. Immunol. 176: 7761-7767.

Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, O. Ringden. 2004. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439-1441.

Lazarus, H. M., O. N. Koc, S. M. Devine, P. Curtin, R. T. Maziarz, H. K. Holland, E. J. Shpall, P. McCarthy, K. Atkinson, B. W. Cooper, et al 2005. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 11: 389-398.

Ringden, O., M. Uzunel, I. Rasmusson, M. Remberger, B. Sundberg, H. Lonnies, H. U. Marschall, A. Dlugosz, A. Szakos, Z. Hassan, et al 2006. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81: 1390-1397.

Fang, B., Y. P. Song, L. M. Liao, Q. Han, R. C. Zhao. 2006. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant. 38: 389-390.

Fibbe, W. E., W. A. Noort. 2003. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann. NY Acad. Sci. 996: 235-244.

Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.

Horwitz, E. M., K. Le Blanc, M. Dominici, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, R. J. Deans, D. S. Krause, A. Keating. 2005. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7: 393-395.

Horwitz, E. M., M. Andreef, F. Frassoni. 2007. Mesenchymal stromal cells. Biol. Blood Marrow Transplant. 13: (Suppl. 1):53-57.

Caplan, A. I.. 1991. Mesenchymal stem cells. J. Orthop. Res. 9: 641-650.

in’t Anker, P. S., W. A. Noort, S. A. Scherjon, C. Kleijburg-van der Keur, A. B. Kruisselbrink, R. L. van Bezooijen, W. Beekhuizen, R. Willemze, H. H. Kanhai, W. E. Fibbe. 2003. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88: 845-852.

Potian, J. A., H. Aviv, N. M. Ponzio, J. S. Harrison, P. Rameshwar. 2003. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol. 171: 3426-3434.

Le Blanc, K., O. Ringden. 2006. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr. Opin. Immunol. 18: 586-591.

Harris, J.. 1994. Fibroblasts and their transformations: the connective-tissue cell family. B. Alberts, and D. Bray, and J. Lewis, and M. Ralk, and K. Roberts, and J. D. Watson, eds. Molecular Biology of the Cell 3rd Ed.1179-1193. Garland Publishing, New York.

Takahashi, K., S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.

Kundig, T. M., M. F. Bachmann, C. DiPaolo, J. J. Simard, M. Battegay, H. Lother, A. Gessner, K. Kuhlcke, P. S. Ohashi, H. Hengartner, et al 1995. Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 268: 1343-1347.

Shimabukuro, Y., S. Murakami, H. Okada. 1992. Interferon-γ-dependent immunosuppressive effects of human gingival fibroblasts. Immunology 76: 344-347.

Sarkhosh, K., E. E. Tredget, Y. Li, R. T. Kilani, H. Uludag, A. Ghahary. 2003. Proliferation of peripheral blood mononuclear cells is suppressed by the indoleamine 2,3-dioxygenase expression of interferon-γ-treated skin cells in a co-culture system. Wound Repair Regen. 11: 337-345.

Korn, J. H.. 1981. Modulation of lymphocyte mitogen responses by cocultured fibroblasts. Cell. Immunol. 63: 374-384.

Donnelly, J. J., M. S. Xi, J. H. Rockey. 1993. A soluble product of human corneal fibroblasts inhibits lymphocyte activation: enhancement by interferon-γ. Exp. Eye Res. 56: 157-165.

Chomarat, P., J. Banchereau, J. Davoust, A. K. Palucka. 2000. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 1: 510-514.

Banchereau, J., R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252.

Kalinski, P., M. Moser. 2005. Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat. Rev. Immunol. 5: 251-260.

Le Blanc, K., L. Tammik, B. Sundberg, S. E. Haynesworth, O. Ringden. 2003. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57: 11-20.

Hilkens, C. M., P. Kalinski, M. de Boer, M. L. Kapsenberg. 1997. Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T-helper cells toward the Th1 phenotype. Blood 90: 1920-1926.

Collin, M. P., D. N. Hart, G. H. Jackson, G. Cook, J. Cavet, S. Mackinnon, P. G. Middleton, A. M. Dickinson. 2006. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 203: 27-33.

Lerner, K. G., G. F. Kao, R. Storb, C. D. Buckner, R. A. Clift, E. D. Thomas. 1974. Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors. Transplant. Proc. 6: 367-371.

Vogelsang, G. B., A. D. Hess, A. W. Berkman, P. J. Tutschka, E. R. Farmer, P. J. Converse, G. W. Santos. 1985. An in vitro predictive test for graft versus host disease in patients with genotypic HLA-identical bone marrow transplants. N. Engl. J. Med. 313: 645-650.

Dickinson, A. M., X. N. Wang, L. Sviland, F. A. Vyth-Dreese, G. H. Jackson, T. N. Schumacher, J. B. Haanen, T. Mutis, E. Goulmy. 2002. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat. Med. 8: 410-414.

Wang, X. N., M. Collin, L. Sviland, S. Marshall, G. Jackson, U. Schulz, E. Holler, S. Karrer, H. Greinix, F. Elahi, et al 2006. Skin explant model of human graft-versus-host disease: prediction of clinical outcome and correlation with biological risk factors. Biol. Blood Marrow Transplant. 12: 152-159.

Quirici, N., D. Soligo, P. Bossolasco, F. Servida, C. Lumini, G. L. Deliliers. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30: 783-791.

Castro-Malaspina, H., R. E. Gay, G. Resnick, N. Kapoor, P. Meyers, D. Chiarieri, S. McKenzie, H. E. Broxmeyer, M. A. Moore. 1980. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56: 289-301.

Clark, R. A., K. Yamanaka, M. Bai, R. Dowgiert, T. S. Kupper. 2005. Human skin cells support thymus-independent T cell development. J. Clin. Invest. 115: 3239-3249.

Clark, R. A., T. S. Kupper. 2007. IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood 109: 194-202.

Filer, A., G. Parsonage, E. Smith, C. Osborne, A. M. Thomas, S. J. Curnow, G. E. Rainger, K. Raza, G. B. Nash, J. Lord, et al 2006. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 54: 2096-2108.

Zhang, W., W. Ge, C. Li, S. You, L. Liao, Q. Han, W. Deng, R. C. Zhao. 2004. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 13: 263-271.

Jiang, X. X., Y. Zhang, B. Liu, S. X. Zhang, Y. Wu, X. D. Yu, N. Mao. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120-4126.

Tse, W. T., J. D. Pendleton, W. M. Beyer, M. C. Egalka, E. C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75: 389-397.

Rasmusson, I., O. Ringden, B. Sundberg, K. Le Blanc. 2005. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp. Cell Res. 305: 33-41.

Klyushnenkova, E., J. D. Mosca, V. Zernetkina, M. K. Majumdar, K. J. Beggs, D. W. Simonetti, R. J. Deans, K. R. McIntosh. 2005. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci. 12: 47-57.

Terness, P., T. M. Bauer, L. Rose, C. Dufter, A. Watzlik, H. Simon, G. Opelz. 2002. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196: 447-457.

Ito, M., K. Ogawa, K. Takeuchi, A. Nakada, M. Heishi, H. Suto, K. Mitsuishi, Y. Sugita, H. Ogawa, C. Ra. 2004. Gene expression of enzymes for tryptophan degradation pathway is upregulated in the skin lesions of patients with atopic dermatitis or psoriasis. J. Dermatol. Sci. 36: 157-164.

Pfefferkorn, E. R.. 1984. Interferon-γ blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl. Acad. Sci. USA 81: 908-912.

Rasmusson, I., O. Ringden, B. Sundberg, K. Le Blanc. 2003. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76: 1208-1213.

DeSilva, D. R., K. B. Urdahl, M. K. Jenkins. 1991. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol. 147: 3261-3267.

Jones, E. A., A. English, K. Henshaw, S. E. Kinsey, A. F. Markham, P. Emery, D. McGonagle. 2004. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 50: 817-827.

Lennon, D. P., S. E. Haynesworth, D. M. Arm, M. A. Baber, A. I. Caplan. 2000. Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev. Dyn. 219: 50-62.

Fukuchi, Y., H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, K. Tsuji. 2004. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22: 649-658.

Musina, R. A., E. S. Bekchanova, G. T. Sukhikh. 2005. Comparison of mesenchymal stem cells obtained from different human tissues. Bull. Exp. Biol. Med. 139: 504-509.

Sakaguchi, Y., I. Sekiya, K. Yagishita, T. Muneta. 2005. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 52: 2521-2529.

Kaufman, K. A., J. A. Bowen, A. F. Tsai, J. A. Bluestone, J. S. Hunt, C. Ober. 1999. The CTLA-4 gene is expressed in placental fibroblasts. Mol. Hum. Reprod. 5: 84-87.

Lee, J. W., M. Epardaud, J. Sun, J. E. Becker, A. C. Cheng, A. R. Yonekura, J. K. Heath, S. J. Turley. 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8: 181-190.

Sorrell, J. M., A. I. Caplan. 2004. Fibroblast heterogeneity: more than skin deep. J. Cell Sci. 117: 667-675.

Ali, M., F. Ponchel, K. E. Wilson, M. J. Francis, X. Wu, A. Verhoef, A. W. Boylston, D. J. Veale, P. Emery, A. F. Markham, et al 2001. Rheumatoid arthritis synovial T cells regulate transcription of several genes associated with antigen-induced anergy. J. Clin. Invest. 107: 519-528.

Berner, B., D. Akca, T. Jung, G. A. Muller, M. A. Reuss-Borst. 2000. Analysis of Th1 and Th2 cytokines expressing CD4+ and CD8+ T cells in rheumatoid arthritis by flow cytometry. J. Rheumatol. 27: 1128-1135.

Gerli, R., O. Bistoni, A. Russano, S. Fiorucci, L. Borgato, M. E. Cesarotti, C. Lunardi. 2002. In vivo activated T cells in rheumatoid synovitis: analysis of Th1- and Th2-type cytokine production at clonal level in different stages of disease. Clin. Exp. Immunol. 129: 549-555.

van Roon, J. A., J. W. Bijlsma. 2002. Th2 mediated regulation in RA and the spondyloarthropathies. Ann. Rheum. Dis. 61: 951-954.

van Roon, J. A., C. A. Glaudemans, J. W. Bijlsma, F. P. Lafeber. 2003. Differentiation of naive CD4+ T cells towards T helper 2 cells is not impaired in rheumatoid arthritis patients. Arthritis Res. Ther. 5: R269-R276.