Does the introduction of futures improve the efficiency of Bitcoin?
Tài liệu tham khảo
Alvarez-Ramirez, 2018, Long-range correlations and asymmetry in the Bitcoin market, Physica A: Stat. Mech. Appl., 492, 948, 10.1016/j.physa.2017.11.025
Bariviera, 2017, Some stylized facts of the Bitcoin market, Physica A, 484, 82, 10.1016/j.physa.2017.04.159
Bartels, 1982, The rank version of von Neumann’s ratio test for randomness, J. Am. Stat. Assoc., 77, 40, 10.1080/01621459.1982.10477764
Boehmer, 2009, Institutional investors and the informational efficiency of prices, Rev. Financ. Stud., 22, 3563, 10.1093/rfs/hhp028
Bouri, 2017, Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions, Finance Res. Lett., 23, 87, 10.1016/j.frl.2017.02.009
Bouri, 2017, On the hedge and safe haven properties of Bitcoin: is it really more than a diversifier?, Finance Res. Lett., 20, 192, 10.1016/j.frl.2016.09.025
Brauneis, 2018, Price discovery of cryptocurrencies: Bitcoin and beyond, Econ. Lett., 165, 58, 10.1016/j.econlet.2018.02.001
Brock, 1991
Brock, 1996, A Test for independence on the correlation dimension, Econom. Rev., 15, 197, 10.1080/07474939608800353
Charles, 2011, Small sample properties of alternative tests for martingale difference hypothesis, Econ. Lett., 110, 151, 10.1016/j.econlet.2010.11.018
Cheung, 2015, Crypto-currency bubbles: an application of the Phillips–Shi–Yu (2013) methodology on Mt. Gox Bitcoin prices, Appl. Econ., 47, 2348, 10.1080/00036846.2015.1005827
Corbet, 2017, Datestamping the bitcoin and ethereum bubbles, Finance Res. Lett.
Delignieres, 2006, Fractal analyses for ‘short’ time series: a re-assessment of classical methods, J. Math. Psychol., 50, 525, 10.1016/j.jmp.2006.07.004
Deriche, 1993, Maximum likelihood estimation of the parameters of discrete fractionally differenced gaussian noise process, IEEE Trans. Signal Process., 41, 2977, 10.1109/78.277804
Durlauf, 1991, Spectral based testing of the martingale hypothesis, J. Econom., 50, 355, 10.1016/0304-4076(91)90025-9
Dyhrberg, 2016, Bitcoin, gold and the dollar - a GARCH volatility analysis, Finance Res. Lett., 16, 85, 10.1016/j.frl.2015.10.008
Dyhrberg, 2016, Hedging capabilities of Bitcoin. Is it the virtual gold?, Finance Res. Lett., 16, 139, 10.1016/j.frl.2015.10.025
Escanciano, 2009, An automatic Portmanteau test for serial correlation, J. Econom., 151, 140, 10.1016/j.jeconom.2009.03.001
Escanciano, 2006, Generalized spectral tests for the martingale difference hypothesis, J. Econom., 134, 151, 10.1016/j.jeconom.2005.06.019
Fama, 1970, Efficient capital markets : a review of theory and empirical, J. Finance, 25, 383, 10.2307/2325486
Hurst, 1951, Long term storage capacities of reservoirs, Trans. Am. Soc. Civ. Eng., 116, 776
Jiang, 2017, Time-varying long-term memory in Bitcoin market, Finance Res. Lett.
Katsiampa, 2017, Volatility estimation for Bitcoin: a comparison of GARCH models, Econ.Lett., 158, 3, 10.1016/j.econlet.2017.06.023
Khuntia, 2018, Adaptive market hypothesis and evolving predictability of Bitcoin, Econ. Lett., 167, 26, 10.1016/j.econlet.2018.03.005
Kim, 2009, Automatic variance ratio test under conditional heteroskedasticity, Finance Rese. Lett., 6, 179, 10.1016/j.frl.2009.04.003
Kristoufek, 2018, On Bitcoin markets (in)efficiency and its evolution, Physica A, 503, 257, 10.1016/j.physa.2018.02.161
Lahmiri, 2018, Long-range memory, distributional variation and randomness of Bitcoin volatility, Chaos Solitons Fract., 107, 43, 10.1016/j.chaos.2017.12.018
Ljung, 1978, On a measure of lack of fit in time-series models, Biometrika, 65, 297, 10.1093/biomet/65.2.297
Nadarajah, 2017, On the inefficiency of Bitcoin, Econ. Lett., 150, 6, 10.1016/j.econlet.2016.10.033
Pilgram, 1998, A comparison of estimators for 1/f noise, Physica D, 114, 108, 10.1016/S0167-2789(97)00188-7
Saffi, 2011, Price Efficiency and Short Selling, Rev. Financ. Stud., 24, 821, 10.1093/rfs/hhq124
Tiwari, 2018, Informational efficiency of Bitcoin–an extension, Econ. Lett., 163, 106, 10.1016/j.econlet.2017.12.006
Urquhart, 2016, The inefficiency of Bitcoin, Econ. Lett., 148, 80, 10.1016/j.econlet.2016.09.019
Urquhart, 2017, Price clustering in Bitcoin, Econ. Lett., 159, 145, 10.1016/j.econlet.2017.07.035
Vidal-Tomás, 2018, Semi-strong efficiency of Bitcoin, Finance Rese. Lett., 10.1016/j.frl.2018.03.013
Wald, 1940, On a test whether two samples are from the same population, Ann. Math. Stat., 11, 147, 10.1214/aoms/1177731909