Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures

Cell Systems - Tập 5 - Trang 251-267.e3 - 2017
Thalia E. Chan1, Michael P.H. Stumpf1,2, Ann C. Babtie1
1Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
2MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, London W12 0NN, UK

Tài liệu tham khảo

Agresti, 2005, Bayesian inference for categorical data analysis, Stat. Methods Appt., 14, 297, 10.1007/s10260-005-0121-y Bacher, 2016, Design and computational analysis of single-cell RNA- sequencing experiments, Genome Biol., 17, 1, 10.1186/s13059-016-0927-y Beal, 2005, A Bayesian approach to reconstructing genetic regulatory networks with hidden factors, Bioinformatics, 21, 349, 10.1093/bioinformatics/bti014 Bendall, 2014, Single-cell Trajectory detection Uncovers progression and regulatory coordination in human B cell development, Cell, 157, 714, 10.1016/j.cell.2014.04.005 Bezanson, 2014, Julia: a fresh approach to numerical computing, arXiv Bonneau, 2006, The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo, Genome Biol., 7, R36, 10.1186/gb-2006-7-5-r36 Boyle, 2017, An expanded view of complex traits: from polygenic to omnigenic, Cell, 169, 1177, 10.1016/j.cell.2017.05.038 Brennecke, 2013, Accounting for technical noise in single-cell RNA-seq experiments, Nat. Methods, 10, 1093, 10.1038/nmeth.2645 Buettner, 2015, Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells, Nat. Biotechnol., 33, 155, 10.1038/nbt.3102 Butte, 2000, Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks, Proc. Natl. Acad. Sci. USA, 97, 12182, 10.1073/pnas.220392197 Clevers, 2017, What is your conceptual definition of “cell type” in the context of a mature organism?, Cell Syst., 4, 255, 10.1016/j.cels.2017.03.006 Cover, 2012 Davis, 2006 De Smet, 2010, Advantages and limitations of current network inference methods, Nat. Rev. Microbiol., 8, 717, 10.1038/nrmicro2419 Deweese, 1999, How to measure the information gained from one symbol, Network, 10, 325, 10.1088/0954-898X_10_4_303 Faith, 2007, Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles, PLoS Biol., 5, e8, 10.1371/journal.pbio.0050008 Filippi, 2017, A Bayesian nonparametric approach to testing for dependence between random variables, Bayesian Anal., 10.1214/16-BA1027 Finak, 2015, MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data, Genome Biol., 16, 278, 10.1186/s13059-015-0844-5 Fu, 2016, Estimating intrinsic and extrinsic noise from single-cell gene expression measurements, Stat. Appl. Genet. Mol. Biol., 15, 447, 10.1515/sagmb-2016-0002 Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008 Göttgens, 2015, Regulatory network control of blood stem cells, Blood, 125, 2614, 10.1182/blood-2014-08-570226 Gouti, 2015, The route to spinal cord cell types: a tale of signals and switches, Trends Genet., 31, 282, 10.1016/j.tig.2015.03.001 Grün, 2015, Design and analysis of single-cell sequencing experiments, Cell, 163, 799, 10.1016/j.cell.2015.10.039 Guo, 2010, Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst, Dev. Cell, 18, 675, 10.1016/j.devcel.2010.02.012 Haghverdi, 2016, Diffusion pseudotime robustly reconstructs lineage branching, Nat. Methods, 13, 845, 10.1038/nmeth.3971 Harrington, 2014, Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells, Development, 141, 2611, 10.1242/dev.107078 Hausser, 2009, Entropy inference and the James-Stein estimator, with application to nonlinear Gene Association Networks, J. Machine Learn. Res., 10, 1469 Hill, 2016, Inferring causal molecular networks: empirical assessment through a community-based effort, Nat. Methods, 13, 310, 10.1038/nmeth.3773 Hill, 2012, Bayesian inference of signaling network topology in a cancer cell line, Bioinformatics, 28, 2804, 10.1093/bioinformatics/bts514 Huang, 2010, Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules, PLoS Biol., 8, e1000380, 10.1371/journal.pbio.1000380 Huang, 2014, Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR), Mol. Biosyst., 10, 2023, 10.1039/C4MB00053F Ingram, 2006, Network motifs: structure does not determine function, BMC Genomics, 7, 108, 10.1186/1471-2164-7-108 Kharchenko, 2014, Bayesian approach to single-cell differential expression analysis, Nat. Methods, 11, 740, 10.1038/nmeth.2967 Kinney, 2014, Equitability, mutual information, and the maximal information coefficient, Proc. Natl. Acad. Sci. USA, 111, 3354, 10.1073/pnas.1309933111 Klein, 2015, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 161, 1187, 10.1016/j.cell.2015.04.044 Kolodziejczyk, 2015, Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation, Cell Stem Cell, 17, 471, 10.1016/j.stem.2015.09.011 Korthauer, 2016, A statistical approach for identifying differential distributions in single-cell RNA-seq experiments, Genome Biol., 17, 222, 10.1186/s13059-016-1077-y Kraskov, 2004, Estimating mutual information, Phys. Rev. E, 69, 066138, 10.1103/PhysRevE.69.066138 Lebre, 2010, Statistical inference of the time-varying structure of gene-regulation networks, BMC Syst. Biol., 4, 130, 10.1186/1752-0509-4-130 Liang, 2008, Gene Regulatory Network reconstruction using conditional mutual information, EURASIP J. Bioinform Syst. Biol., 2008, 253894, 10.1155/2008/253894 Liu, 2016, Single-cell transcriptome sequencing: recent advances and remaining challenges, F1000Res., 5, 182, 10.12688/f1000research.7223.1 Macosko, 2015, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, 161, 1202, 10.1016/j.cell.2015.05.002 Madar, 2010, DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator, PLoS One, 5, e9803, 10.1371/journal.pone.0009803 Marbach, 2012, Wisdom of crowds for robust gene network inference, Nat. Methods, 9, 796, 10.1038/nmeth.2016 Marbach, 2010, Revealing strengths and weaknesses of methods for gene network inference, Proc. Natl. Acad. Sci. USA, 107, 6286, 10.1073/pnas.0913357107 Margolin, 2006, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC Bioinformatics, 7, S7, 10.1186/1471-2105-7-S1-S7 Margolin, 2006, Reverse engineering cellular networks, Nat. Protoc., 1, 662, 10.1038/nprot.2006.106 Mc Mahon, 2015, Information processing by simple molecular motifs and susceptibility to noise, J. R. Soc. Interf., 12, 20150597, 10.1098/rsif.2015.0597 Mc Mahon, 2014, Information theory and signal transduction systems: from molecular information processing to network inference, Semin. Cell Dev. Biol., 35, 98, 10.1016/j.semcdb.2014.06.011 McDavid, 2014, Modeling bBi-modality improves characterization of cell cycle on gene expression in single cells, PLoS Comput. Biol., 10, e1003696, 10.1371/journal.pcbi.1003696 McGill, 1954, 19, 97 Meyer, 2007, Information-theoretic inference of large transcriptional regulatory Networks, EURASIP J. Bioinform Syst. Biol., 2007, 1, 10.1155/2007/79879 Meyer, 2008, minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information, BMC Bioinformatics, 9, 461, 10.1186/1471-2105-9-461 Moignard, 2013, Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis, Nat. Cell Biol., 15, 363, 10.1038/ncb2709 Moignard, 2015, Decoding the regulatory network of early blood development from single-cell gene expression measurements, Nat. Biotechnol., 33, 269, 10.1038/nbt.3154 Moris, 2016, Transition states and cell fate decisions in epigenetic landscapes, Nat. Rev. Genet., 17, 693, 10.1038/nrg.2016.98 Mosteller, 1977 Murphy, 2012 Oates, 2014, Quantifying the multi-scale performance of network inference algorithms, Stat. Appl. Genet. Mol. Biol., 13, 611, 10.1515/sagmb-2014-0012 Oates, 2012, Network inference and biological dynamics, Ann. Appl. Stat., 6, 1209, 10.1214/11-AOAS532 Ocone, 2015, Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data, Bioinformatics, 31, i89, 10.1093/bioinformatics/btv257 Olsen, 2009, On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information, EURASIP J. Bioinform Syst. Biol., 2009, 1, 10.1155/2009/308959 Opgen-Rhein, 2007, From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data, BMC Syst. Biol., 1, 37, 10.1186/1752-0509-1-37 Paninski, 2003, Estimation of entropy and mutual information, Neural Comput., 15, 1191, 10.1162/089976603321780272 Penfold, 2015, CSI: a nonpara- metric Bayesian approach to network inference from multiple perturbed time series gene expression data, Stat. Appl. Genet. Mol. Biol., 14, 307, 10.1515/sagmb-2014-0082 Penfold, 2011, How to infer gene networks from expression profiles, revisited, Interf. Focus, 1, 857, 10.1098/rsfs.2011.0053 Pierson, 2015, ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis, Genome Biol., 16, 241, 10.1186/s13059-015-0805-z Pina, 2015, Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis, Cell Rep., 11, 1503, 10.1016/j.celrep.2015.05.016 Psaila, 2016, Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways, Genome Biol., 17, 1, 10.1186/s13059-016-0939-7 Reid, 2016, Pseudotime estimation: deconfounding single cell time series, Bioinformatics, 32, 2973, 10.1093/bioinformatics/btw372 Rue, 2015, Cell dynamics and gene expression control in tissue homeostasis and development, Mol. Syst. Biol., 11, 792, 10.15252/msb.20145549 Scargle, 2013, Studies in astronomical time series analysis. VI. Bayesian block representations, Astrophys. J., 764, 167, 10.1088/0004-637X/764/2/167 Schafer, 2005, An empirical Bayes approach to inferring large-scale gene association networks, Bioinformatics, 21, 754, 10.1093/bioinformatics/bti062 Schaffter, 2011, GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods, Bioinformatics, 27, 2263, 10.1093/bioinformatics/btr373 Scialdone, 2015, Computational assignment of cell-cycle stage from single-cell transcriptome data, Methods, 85, 54, 10.1016/j.ymeth.2015.06.021 Setty, 2016, Wishbone identifies bifurcating developmental trajectories from single-cell data, Nat. Biotechnol., 34, 637, 10.1038/nbt.3569 Siegenthaler, 2014, Assessment of network inference methods: how to cope with an underdetermined problem, PLoS One, 9, e90481, 10.1371/journal.pone.0090481 Simoes, 2011, Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks, PLoS One, 6, e29279, 10.1371/journal.pone.0029279 Stegle, 2015, Computational and analytical challenges in single-cell transcriptomics, Nat. Rev. Genet., 16, 133, 10.1038/nrg3833 Steuer, 2002, The mutual information: detecting and evaluating dependencies between variables, Bioinformatics, 18, S231, 10.1093/bioinformatics/18.suppl_2.S231 Stumpf, 2017, Stem cell differentiation is a stochastic process with memory, Cell Syst., 5, 268, 10.1016/j.cels.2017.08.009 Thorne, 2013, Graphical modelling of molecular networks underlying sporadic inclusion body myositis, Mol. Biosyst., 9, 1736, 10.1039/c3mb25497f Thorne, 2012, Inference of temporally varying Bayesian networks, Bioinformatics, 28, 3298, 10.1093/bioinformatics/bts614 Timme, 2014, Synergy, redundancy, and multivariate information measures: an experimentalist's perspective, J. Comput. Neurosci., 36, 119, 10.1007/s10827-013-0458-4 Trapnell, 2014, The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol., 32, 381, 10.1038/nbt.2859 Uda, 2013, Robustness and compensation of information transmission of signaling pathways, Science, 341, 558, 10.1126/science.1234511 Vallejos, 2016, Beyond comparisons of means: understanding changes in gene expression at the single-cell level, Genome Biol., 17, 70, 10.1186/s13059-016-0930-3 van Dijk, 2017, MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data, bioRxiv, 1 Vanderplas, 2012, 47 Villaverde, 2013, Reverse engineering cellular networks with information theoretic methods, Cells, 2, 306, 10.3390/cells2020306 Villaverde, 2013, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, J. R. Soc. Interf., 11, 20130505, 10.1098/rsif.2013.0505 Villaverde, 2014, MIDER: network inference with mutual information distance and entropy reduction, PLoS One, 9, e96732, 10.1371/journal.pone.0096732 Vinciotti, 2016, Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks, Stat. Appl. Genet. Mol. Biol., 15, 193, 10.1515/sagmb-2014-0075 Watkinson, 2009, Inference of regulatory gene interactions from expression data using three-way mutual information, Ann. N. Y. Acad. Sci., 1158, 302, 10.1111/j.1749-6632.2008.03757.x Williams, 2010, Nonnegative decomposition of multivariate information, arXiv Young, 2014, Fast Bayesian inference for gene regulatory networks using ScanBMA, BMC Syst. Biol., 8, 47, 10.1186/1752-0509-8-47 Zhang, 2015, A mutual information estimator with exponentially decaying bias, Stat. Appl. Genet. Mol. Biol., 14, 243, 10.1515/sagmb-2014-0047 Zhao, 2016, Part mutual information for quantifying direct associations in networks, Proc. Natl. Acad. Sci. USA, 113, 5130, 10.1073/pnas.1522586113 Zoppoli, 2010, TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach, BMC Bioinformatics, 11, 154, 10.1186/1471-2105-11-154