Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures
Tài liệu tham khảo
Agresti, 2005, Bayesian inference for categorical data analysis, Stat. Methods Appt., 14, 297, 10.1007/s10260-005-0121-y
Bacher, 2016, Design and computational analysis of single-cell RNA- sequencing experiments, Genome Biol., 17, 1, 10.1186/s13059-016-0927-y
Beal, 2005, A Bayesian approach to reconstructing genetic regulatory networks with hidden factors, Bioinformatics, 21, 349, 10.1093/bioinformatics/bti014
Bendall, 2014, Single-cell Trajectory detection Uncovers progression and regulatory coordination in human B cell development, Cell, 157, 714, 10.1016/j.cell.2014.04.005
Bezanson, 2014, Julia: a fresh approach to numerical computing, arXiv
Bonneau, 2006, The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo, Genome Biol., 7, R36, 10.1186/gb-2006-7-5-r36
Boyle, 2017, An expanded view of complex traits: from polygenic to omnigenic, Cell, 169, 1177, 10.1016/j.cell.2017.05.038
Brennecke, 2013, Accounting for technical noise in single-cell RNA-seq experiments, Nat. Methods, 10, 1093, 10.1038/nmeth.2645
Buettner, 2015, Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells, Nat. Biotechnol., 33, 155, 10.1038/nbt.3102
Butte, 2000, Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks, Proc. Natl. Acad. Sci. USA, 97, 12182, 10.1073/pnas.220392197
Clevers, 2017, What is your conceptual definition of “cell type” in the context of a mature organism?, Cell Syst., 4, 255, 10.1016/j.cels.2017.03.006
Cover, 2012
Davis, 2006
De Smet, 2010, Advantages and limitations of current network inference methods, Nat. Rev. Microbiol., 8, 717, 10.1038/nrmicro2419
Deweese, 1999, How to measure the information gained from one symbol, Network, 10, 325, 10.1088/0954-898X_10_4_303
Faith, 2007, Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles, PLoS Biol., 5, e8, 10.1371/journal.pbio.0050008
Filippi, 2017, A Bayesian nonparametric approach to testing for dependence between random variables, Bayesian Anal., 10.1214/16-BA1027
Finak, 2015, MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data, Genome Biol., 16, 278, 10.1186/s13059-015-0844-5
Fu, 2016, Estimating intrinsic and extrinsic noise from single-cell gene expression measurements, Stat. Appl. Genet. Mol. Biol., 15, 447, 10.1515/sagmb-2016-0002
Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008
Göttgens, 2015, Regulatory network control of blood stem cells, Blood, 125, 2614, 10.1182/blood-2014-08-570226
Gouti, 2015, The route to spinal cord cell types: a tale of signals and switches, Trends Genet., 31, 282, 10.1016/j.tig.2015.03.001
Grün, 2015, Design and analysis of single-cell sequencing experiments, Cell, 163, 799, 10.1016/j.cell.2015.10.039
Guo, 2010, Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst, Dev. Cell, 18, 675, 10.1016/j.devcel.2010.02.012
Haghverdi, 2016, Diffusion pseudotime robustly reconstructs lineage branching, Nat. Methods, 13, 845, 10.1038/nmeth.3971
Harrington, 2014, Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells, Development, 141, 2611, 10.1242/dev.107078
Hausser, 2009, Entropy inference and the James-Stein estimator, with application to nonlinear Gene Association Networks, J. Machine Learn. Res., 10, 1469
Hill, 2016, Inferring causal molecular networks: empirical assessment through a community-based effort, Nat. Methods, 13, 310, 10.1038/nmeth.3773
Hill, 2012, Bayesian inference of signaling network topology in a cancer cell line, Bioinformatics, 28, 2804, 10.1093/bioinformatics/bts514
Huang, 2010, Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules, PLoS Biol., 8, e1000380, 10.1371/journal.pbio.1000380
Huang, 2014, Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR), Mol. Biosyst., 10, 2023, 10.1039/C4MB00053F
Ingram, 2006, Network motifs: structure does not determine function, BMC Genomics, 7, 108, 10.1186/1471-2164-7-108
Kharchenko, 2014, Bayesian approach to single-cell differential expression analysis, Nat. Methods, 11, 740, 10.1038/nmeth.2967
Kinney, 2014, Equitability, mutual information, and the maximal information coefficient, Proc. Natl. Acad. Sci. USA, 111, 3354, 10.1073/pnas.1309933111
Klein, 2015, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 161, 1187, 10.1016/j.cell.2015.04.044
Kolodziejczyk, 2015, Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation, Cell Stem Cell, 17, 471, 10.1016/j.stem.2015.09.011
Korthauer, 2016, A statistical approach for identifying differential distributions in single-cell RNA-seq experiments, Genome Biol., 17, 222, 10.1186/s13059-016-1077-y
Kraskov, 2004, Estimating mutual information, Phys. Rev. E, 69, 066138, 10.1103/PhysRevE.69.066138
Lebre, 2010, Statistical inference of the time-varying structure of gene-regulation networks, BMC Syst. Biol., 4, 130, 10.1186/1752-0509-4-130
Liang, 2008, Gene Regulatory Network reconstruction using conditional mutual information, EURASIP J. Bioinform Syst. Biol., 2008, 253894, 10.1155/2008/253894
Liu, 2016, Single-cell transcriptome sequencing: recent advances and remaining challenges, F1000Res., 5, 182, 10.12688/f1000research.7223.1
Macosko, 2015, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, 161, 1202, 10.1016/j.cell.2015.05.002
Madar, 2010, DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator, PLoS One, 5, e9803, 10.1371/journal.pone.0009803
Marbach, 2012, Wisdom of crowds for robust gene network inference, Nat. Methods, 9, 796, 10.1038/nmeth.2016
Marbach, 2010, Revealing strengths and weaknesses of methods for gene network inference, Proc. Natl. Acad. Sci. USA, 107, 6286, 10.1073/pnas.0913357107
Margolin, 2006, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC Bioinformatics, 7, S7, 10.1186/1471-2105-7-S1-S7
Margolin, 2006, Reverse engineering cellular networks, Nat. Protoc., 1, 662, 10.1038/nprot.2006.106
Mc Mahon, 2015, Information processing by simple molecular motifs and susceptibility to noise, J. R. Soc. Interf., 12, 20150597, 10.1098/rsif.2015.0597
Mc Mahon, 2014, Information theory and signal transduction systems: from molecular information processing to network inference, Semin. Cell Dev. Biol., 35, 98, 10.1016/j.semcdb.2014.06.011
McDavid, 2014, Modeling bBi-modality improves characterization of cell cycle on gene expression in single cells, PLoS Comput. Biol., 10, e1003696, 10.1371/journal.pcbi.1003696
McGill, 1954, 19, 97
Meyer, 2007, Information-theoretic inference of large transcriptional regulatory Networks, EURASIP J. Bioinform Syst. Biol., 2007, 1, 10.1155/2007/79879
Meyer, 2008, minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information, BMC Bioinformatics, 9, 461, 10.1186/1471-2105-9-461
Moignard, 2013, Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis, Nat. Cell Biol., 15, 363, 10.1038/ncb2709
Moignard, 2015, Decoding the regulatory network of early blood development from single-cell gene expression measurements, Nat. Biotechnol., 33, 269, 10.1038/nbt.3154
Moris, 2016, Transition states and cell fate decisions in epigenetic landscapes, Nat. Rev. Genet., 17, 693, 10.1038/nrg.2016.98
Mosteller, 1977
Murphy, 2012
Oates, 2014, Quantifying the multi-scale performance of network inference algorithms, Stat. Appl. Genet. Mol. Biol., 13, 611, 10.1515/sagmb-2014-0012
Oates, 2012, Network inference and biological dynamics, Ann. Appl. Stat., 6, 1209, 10.1214/11-AOAS532
Ocone, 2015, Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data, Bioinformatics, 31, i89, 10.1093/bioinformatics/btv257
Olsen, 2009, On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information, EURASIP J. Bioinform Syst. Biol., 2009, 1, 10.1155/2009/308959
Opgen-Rhein, 2007, From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data, BMC Syst. Biol., 1, 37, 10.1186/1752-0509-1-37
Paninski, 2003, Estimation of entropy and mutual information, Neural Comput., 15, 1191, 10.1162/089976603321780272
Penfold, 2015, CSI: a nonpara- metric Bayesian approach to network inference from multiple perturbed time series gene expression data, Stat. Appl. Genet. Mol. Biol., 14, 307, 10.1515/sagmb-2014-0082
Penfold, 2011, How to infer gene networks from expression profiles, revisited, Interf. Focus, 1, 857, 10.1098/rsfs.2011.0053
Pierson, 2015, ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis, Genome Biol., 16, 241, 10.1186/s13059-015-0805-z
Pina, 2015, Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis, Cell Rep., 11, 1503, 10.1016/j.celrep.2015.05.016
Psaila, 2016, Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways, Genome Biol., 17, 1, 10.1186/s13059-016-0939-7
Reid, 2016, Pseudotime estimation: deconfounding single cell time series, Bioinformatics, 32, 2973, 10.1093/bioinformatics/btw372
Rue, 2015, Cell dynamics and gene expression control in tissue homeostasis and development, Mol. Syst. Biol., 11, 792, 10.15252/msb.20145549
Scargle, 2013, Studies in astronomical time series analysis. VI. Bayesian block representations, Astrophys. J., 764, 167, 10.1088/0004-637X/764/2/167
Schafer, 2005, An empirical Bayes approach to inferring large-scale gene association networks, Bioinformatics, 21, 754, 10.1093/bioinformatics/bti062
Schaffter, 2011, GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods, Bioinformatics, 27, 2263, 10.1093/bioinformatics/btr373
Scialdone, 2015, Computational assignment of cell-cycle stage from single-cell transcriptome data, Methods, 85, 54, 10.1016/j.ymeth.2015.06.021
Setty, 2016, Wishbone identifies bifurcating developmental trajectories from single-cell data, Nat. Biotechnol., 34, 637, 10.1038/nbt.3569
Siegenthaler, 2014, Assessment of network inference methods: how to cope with an underdetermined problem, PLoS One, 9, e90481, 10.1371/journal.pone.0090481
Simoes, 2011, Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks, PLoS One, 6, e29279, 10.1371/journal.pone.0029279
Stegle, 2015, Computational and analytical challenges in single-cell transcriptomics, Nat. Rev. Genet., 16, 133, 10.1038/nrg3833
Steuer, 2002, The mutual information: detecting and evaluating dependencies between variables, Bioinformatics, 18, S231, 10.1093/bioinformatics/18.suppl_2.S231
Stumpf, 2017, Stem cell differentiation is a stochastic process with memory, Cell Syst., 5, 268, 10.1016/j.cels.2017.08.009
Thorne, 2013, Graphical modelling of molecular networks underlying sporadic inclusion body myositis, Mol. Biosyst., 9, 1736, 10.1039/c3mb25497f
Thorne, 2012, Inference of temporally varying Bayesian networks, Bioinformatics, 28, 3298, 10.1093/bioinformatics/bts614
Timme, 2014, Synergy, redundancy, and multivariate information measures: an experimentalist's perspective, J. Comput. Neurosci., 36, 119, 10.1007/s10827-013-0458-4
Trapnell, 2014, The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol., 32, 381, 10.1038/nbt.2859
Uda, 2013, Robustness and compensation of information transmission of signaling pathways, Science, 341, 558, 10.1126/science.1234511
Vallejos, 2016, Beyond comparisons of means: understanding changes in gene expression at the single-cell level, Genome Biol., 17, 70, 10.1186/s13059-016-0930-3
van Dijk, 2017, MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data, bioRxiv, 1
Vanderplas, 2012, 47
Villaverde, 2013, Reverse engineering cellular networks with information theoretic methods, Cells, 2, 306, 10.3390/cells2020306
Villaverde, 2013, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, J. R. Soc. Interf., 11, 20130505, 10.1098/rsif.2013.0505
Villaverde, 2014, MIDER: network inference with mutual information distance and entropy reduction, PLoS One, 9, e96732, 10.1371/journal.pone.0096732
Vinciotti, 2016, Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks, Stat. Appl. Genet. Mol. Biol., 15, 193, 10.1515/sagmb-2014-0075
Watkinson, 2009, Inference of regulatory gene interactions from expression data using three-way mutual information, Ann. N. Y. Acad. Sci., 1158, 302, 10.1111/j.1749-6632.2008.03757.x
Williams, 2010, Nonnegative decomposition of multivariate information, arXiv
Young, 2014, Fast Bayesian inference for gene regulatory networks using ScanBMA, BMC Syst. Biol., 8, 47, 10.1186/1752-0509-8-47
Zhang, 2015, A mutual information estimator with exponentially decaying bias, Stat. Appl. Genet. Mol. Biol., 14, 243, 10.1515/sagmb-2014-0047
Zhao, 2016, Part mutual information for quantifying direct associations in networks, Proc. Natl. Acad. Sci. USA, 113, 5130, 10.1073/pnas.1522586113
Zoppoli, 2010, TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach, BMC Bioinformatics, 11, 154, 10.1186/1471-2105-11-154