Ferroelectric Thin Films and Multilayer Structures Based on Them

Soviet Powder Metallurgy and Metal Ceramics - Tập 39 Số 7 - Trang 345-354 - 2000
Glinchuk, Maya D.1
1Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kiev 142, Ukraine

Tóm tắt

A brief review is presented of the results of recent research into ferroelectric films and their multilayer structures. The main attention is paid to theoretical calculation of the physical properties that characterize ferroelectric materials (electric polarization, phase transition temperature, dielectric response) in thick and thin films and their multilayer structures. Within the phenomenological theory it is shown that the main reason for a decrease in film symmetry is internal mechanical stress connected with the mismatch in lattice constants, difference in thermal expansion coefficients of the substrate and film, and also growth imperfections. These stresses lead to a change (decrease or increase) in the para-ferroelectric transition temperature that is actually observed in thick films. In thin films, where it is necessary to consider polarization gradients, a ferroelectric transition develops whose temperature depends on film thickness (thickness induced phase transition). The polarization and dielectric permittivity of films and their multilayer structures are calculated. It is demonstrated that permittivity becomes infinitely great close to the thickness induced phase transition temperature. The theory fits well with the recently observed huge dielectric permittivity and its temperature dependence in a multilayer structure of thin films of PbTiO3 and Pb0.72La0.28TiO3.

Tài liệu tham khảo

citation_title=Semiconductor superlattices; citation_inbook_title=Growth and Electronic Properties; citation_publication_date=1995; citation_id=CR1; citation_author=H. T. Grahn; citation_publisher=World Scientific citation_title=Metallic superlattices; citation_inbook_title=Artificially Structured Materials; citation_publication_date=1987; citation_id=CR2; citation_author=T. Shinjo; citation_author=T. Takada; citation_publisher=Elsevier citation_title=Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices; citation_publication_date=1994; citation_id=CR3; citation_author=M. G. Cottam; citation_publisher=World Scientific I. Bozovic, Superconducting Superlattices and Multilayers, Bellingham (1994). citation_title=Thin Film Ferroelectric Materials and Devices; citation_publication_date=1997; citation_id=CR5; citation_publisher=Kluwer citation_journal_title=Surf. Sci; citation_author=M. F. Deigen, M. D. Glinchuk; citation_volume=3; citation_publication_date=1965; citation_pages=243; citation_id=CR6 citation_journal_title=Phys. Rev. B; citation_author=B. K. Ridley, O. Al-Dossary, N. C. Konstantinu, M. Babiker; citation_volume=50; citation_publication_date=1994; citation_pages=11701; citation_id=CR7 citation_journal_title=Phys. Stat. Solidi (a); citation_author=A. Deineka, M. D. Glinchuk, L. Jastrabik; citation_volume=175; citation_publication_date=1999; citation_pages=443; citation_id=CR8 citation_journal_title=Phys. Rev. B; citation_author=Y. Kim, R. A. Gerhardt, A. Erbil; citation_volume=55; citation_publication_date=1997; citation_pages=8766; citation_id=CR9 citation_journal_title=Appl. Phys. Lett; citation_author=J. C. Jiang, X. Q. Pan, W. Tian; citation_volume=24; citation_publication_date=1999; citation_pages=2851; citation_id=CR10 citation_journal_title=Phys. Rev. Lett; citation_author=E. D. Specht, H.-M. Christen, D. P. Norton, L. A. Boatner; citation_volume=80; citation_publication_date=1998; citation_pages=4317; citation_id=CR11 citation_journal_title=Phys. Rev. B; citation_author=F. Le Marrec, R. Farhi, M. El. Marssi; citation_volume=61; citation_publication_date=2000; citation_pages=6447; citation_id=CR12 citation_journal_title=Appl. Phys. Lett; citation_author=G. A. Rossetti, L. E. Cross, K. Kushida; citation_volume=59; citation_publication_date=1991; citation_pages=2524; citation_id=CR13 citation_journal_title=Phys. Rev. Lett.; citation_author=N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev; citation_volume=80; citation_publication_date=1998; citation_pages=1988; citation_id=CR14 citation_journal_title=Phys. Rev. B; citation_author=B. D. Qu, W. L. Zhong, R. H. Prince; citation_volume=55; citation_publication_date=1997; citation_pages=112; citation_id=CR15 citation_journal_title=J. Appl. Phys; citation_author=J. S. Speck, W. Pompe; citation_volume=76; citation_publication_date=1994; citation_pages=466; citation_id=CR16 M. D. Glinchuk, V. A. Stephanovich, and E. A. Eliseev, Cond-mat/00042258. citation_title=Mathematics Handbook; citation_publication_date=1979; citation_id=CR18; citation_author=I. N. Bronshtein; citation_author=K. A. Semendyaev; citation_publisher=Tyubner Y. Ishibashi, H. Orihara, and D. R. Tilley, J. Phys. Soc. Jpn., 3292 (1998). M. Abramovich and A. Stegun, Handbook of Mathematical Functions [in Russian], Moscow (1978). E. Whittaker and G. Watson, Course in Contemporary Analysis, Cambridge (1952). citation_journal_title=Phys. Rev. B; citation_author=Y. G. Wang, W. L. Zhong, P. L. Zhang; citation_volume=51; citation_publication_date=1995; citation_pages=5311; citation_id=CR22