Improving forecasts of El Niño diversity: a nonlinear forcing singular vector approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res. https://doi.org/10.1029/2006jc003798
Barkmeijer J, Iversen T, Palmer TN (2003) Forcing singular vectors and other sensitive model structures. QJR Meteorol Soc 129:2401–2423. https://doi.org/10.1256/qj.02.126
Capotondi A (2013) El Niño diversity in the NCAR CCSM4 climate model. J Geophys Res-Oceans 118:4755–4770. https://doi.org/10.1002/jgrc.20335
Chen D, Cane MA, Zebiak SE, Canizares R, Kaplan A (2000) Bias correction of an ocean-atmosphere coupled model. Geophy Res Lett 27:2585–2588. https://doi.org/10.1029/1999gl011078
Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Climate 17:4143–4158. https://doi.org/10.1175/JCLI4953.1
Choi J, An SI, Kug JS, Yeh SW (2011) The role of mean state on changes in El Nio’s flavor. Clim Dynam 37:1205–1215. https://doi.org/10.1007/s00382-010-0912-1
Duan WS, Zhou FF (2013) Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A 65:256–256. https://doi.org/10.3402/tellusa.v65i0.18452
Duan WS, Hu JY (2016) The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: results from an earth system model. Clim Dynam 46:3599–3615. https://doi.org/10.1007/s00382-015-2789-5
Duan WS, Tian B, Xu H (2014) Simulations of two types of El Niño events by an optimal forcing vector approach. Clim Dynam 43:1677–1692. https://doi.org/10.1007/s00382-013-1993-4
Duan WS, Wei C (2013) The “spring predictability barrier” for ENSO predictions and its possible mechanism: results from a fully coupled model. Int J Climatol 33(5):1280–1292. https://doi.org/10.1002/joc.3513
Gao C, Wu XR, Zhang R-H (2016) Testing a four-dimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction. Adv Atmos Sci, 33, 875–888. https://doi.org/10.1007/s00376-016-5249-1
Gao C, Zhang R-H (2017) The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010-2012 La Niña event. Clim Dynam 48:597–617. https://doi.org/10.1007/s00382-016-3097-4
Gao C, Zhang RH, Wu XR, Sun JC (2018) Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO. Adv Atmos Sci 35:410–422. https://doi.org/10.1007/s00376-017-7109-z
Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Niño? Clim Dynam 39:383–398. https://doi.org/10.1007/s00382-011-1157-3
Hendon HH, Lim E, Wang GM, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett. https://doi.org/10.1029/2009gl040100
Hou MY, Duan WS, W. and Zhi XF (2019) Season-dependent predictability barrier for two types of El Niño revealed by an approach to data analysis for predictability. Clim Dynam 53:5561–5581. https://doi.org/10.1007/s00382-019-04888-w
Hu JY, Duan WS (2016) Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. J Geophys Res Oceans 121:2901–2917. https://doi.org/10.1002/2015JC011386
Jeong HI, Coauthors (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dynam 39:475–493. https://doi.org/10.1007/s00382-012-1359-3
Ji. M, Leetmaa A, Kousky VE (1996) Coupled model forecasts of ENSO during the 1980 and 1990s at the National Centers for Environmental Prediction. J Clim 9:3105–3120. https://doi.org/10.1175/1520-0442(1996)009<3105:CMPOED>2.0.CO;2
Jin EK, Coauthors (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dynam 31:647–664. https://doi.org/10.1007/s00382-008-0397-3
Kalnay E, Coauthors (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2
Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632. https://doi.org/10.1175/2008JCLI2309.1
Kim ST, Yu JY, Kumar A, Wang H (2012) Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon Weather Rev 140:1908–1923. https://doi.org/10.1175/Mwr-D-11-00300.1
Kug JS, Jin FF, An SI (2009) Two Types of El Niño Events: cold Tongue El Niño and Warm Pool El Niño. J Clim 22:1499–1515. https://doi.org/10.1175/2008JCLI2624.1
Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold Tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239. https://doi.org/10.1175/2009jcli3293.1
Lee RW-K, Tam C-Y, Sohn S-J, Ahn J-B (2018) Predictability of two types of El Niño and their climate impacts in boreal spring to summer in coupled models. Clim Dynam 51:4555–4571. https://doi.org/10.1007/s00382-017-4039-5
Mu B, Ren J, Yuan S, Zhang RH, Chen L, Gao C (2019) The optimal precursors for ENSO events depicted using the Gradient-definition-based method in an intermediate coupled model. Adv Atmos Sci 36(12):1381–1392
Moore AM, Kleeman R (1996) The dynamics of error growth and predictability in a coupled model of ENSO. Quart J R Meteorol Soc 534:1405–1446. https://doi.org/10.1002/qj.49712253409
Nicolis C, Perdigao R, Vannitsem S (2009) Dynamics of prediction errors under the combined effect of initial condition and model errors. J Atmos Sci 66:766–778. https://doi.org/10.1175/2008JAS2781.1
Ren HL, Scaife AA, Dunstone N, Tian B, Liu Y, Ineson S, Lee JY, Smith D, Liu CZ, Thompson V, Vellinga M, MacLachlan C (2018a) Seasonal predictability of winter ENSO types in operational dynamical model predictions. Clim Dynam. https://doi.org/10.1007/s00382-018-4366-1
Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett. https://doi.org/10.1029/2010gl046031
Ren HL, Zuo JQ, Deng Y (2018b) Statistical predictability of Niño indices for two types of ENSO. Clim Dynam. https://doi.org/10.1007/s00382-018-4453-3
Ren HL, Jin FF, Tian B, Scaife AA (2016) Distinct persistence barriers in two types of ENSO. Geophys Res Lett 43:10973–10979. https://doi.org/10.1002/2016gl071015
Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. https://doi.org/10.1175/2007JCLI2100.1
Tao LJ, Zhang RH, Gao C (2017) Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv Atmos Sci 34:791–803. https://doi.org/10.1007/s00376-017-6266-4
Tao LJ, Gao C, Zhang RH (2018) ENSO predictions in an intermediate coupled model influenced by removing initial condition errors in sensitive areas: a target observation perspective. Adv Atmos Sci 35:853–867. https://doi.org/10.1007/s00376-017-7138-7
Tao LJ, Duan WS (2019) Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Weather Forecast 34:1321–1342. https://doi.org/10.1175/WAF-D-19-0050.1
Taschetto AS, Sen Gupta A, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885. https://doi.org/10.1175/Jcli-D-13-00437.1
Tian B, Duan WS (2016) Comparison of the initial errors most likely to cause a spring predictability barrier for two types of El Niño events. Clim Dynam 47:779–792. https://doi.org/10.1007/s00382-015-2870-0
Vannitsem S, Toth Z (2002) Short-term dynamics of model errors. J Atmos Sci 59:2594–2604. https://doi.org/10.1175/1520-0469(2002)059<2594:STDOME>2.0.CO;2
Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the Itcz in the Eastern Pacific. Tellus A 46:340–350. https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x
Xie SP, Peng QH, Kamae Y, Zheng XT, Tokinaga H, Wang DX (2018) Eastern Pacific ITCZ Dipole and ENSO Diversity. J Clim 31:4449–4462. https://doi.org/10.1175/JCLI-D-17-0905.1
Yang S, Jiang XW (2014) Prediction of Eastern and Central Pacific ENSO events and their impacts on East Asian climate by the NCEP climate forecast system. J Clim 27:4451–4472. https://doi.org/10.1175/Jcli-D-13-00471.1
Yu JY, Kim ST (2010) Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett. https://doi.org/10.1029/2010gl044082
Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J Clim 24:708–720. https://doi.org/10.1175/2010JCLI3688.1
Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the Central Equatorial Pacific. J Clim 23:2869–2884. https://doi.org/10.1175/2010jcli3171.1
Yu YS,WS, Duan X, Hui, Mu M (2009) Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak-Cane model. Quart J Roy Meteor Soc 135:2146–2160. https://doi.org/10.1002/qj.526
Zebiak SE, Cane MA (1987) A model El-Niño southern oscillation. Mon Weather Rev 115:2262–2278. https://doi.org/10.1175/1520-0493(1987)115<2262:Ameno>2.0.Co;2
Zhang RH, Gao C (2016a) The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Sci Bull 61:1061–1070. https://doi.org/10.1007/s11434-016-1064-4
Zhang RH, Gao C (2016) Role of subsurface entrainment temperature (Te) in the onset of El Nino events, as represented in an intermediate coupled model. Clim Dyn 46(5):1417–1435. https://doi.org/10.1007/s00382-015-2655-5
Zhang RH, Gao C (2017) Processes involved in the second-year warming of the 2014-15 El Niño event as derived from an intermediate ocean model. Sci Chin Earth Sci 60(9):1601–1613. https://doi.org/10.1007/s11430-016-0201-
Zhang RH, Tao LJ, Gao C (2018) An improved simulation of the 2015 El Nio event by optimally correcting the initial conditions and model parameters in an intermediate coupled model. Clim Dynam 51:269–282. https://doi.org/10.1007/s00382-017-3919-z
Zhang RH, Zebiak SE, Kleeman R, Keenlyside N (2003) A new intermediate coupled model for El Niño simulation and prediction. Geophys Res Lett. https://doi.org/10.1029/2003GL018010
Zhang RH, Zebiak SE, Kleeman R, Keenlyside N (2005) Retrospective El Niño forecasts using an improved intermediate coupled model. Mon Weather Rev 133:2777–2802. https://doi.org/10.1175/MWR3000.1
Zheng F, Zhu J (2016) Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Clim Dynam 47:3901–3915. https://doi.org/10.1007/s00382-016-3048-0