Electrochromic titania nanotube arrays for the enhanced photocatalytic degradation of phenol and pharmaceutical compounds
Tài liệu tham khảo
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Choi, 1994, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669, 10.1021/j100102a038
Sun, 2008, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes, J. Am. Chem. Soc., 130, 1124, 10.1021/ja0777741
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Zwilling, 1999, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629, 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
Macak, 2005, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed., 44, 7463, 10.1002/anie.200502781
Paulose, 2007, TiO2 nanotube arrays of 1000μm in length by anodization of titanium foil: phenol red diffusion, J. Phys. Chem. C, 111, 14992, 10.1021/jp075258r
Zhu, 2007, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett., 7, 69, 10.1021/nl062000o
Grimes, 2007, Synthesis and application of highly ordered arrays of TiO2 nanotubes, J. Mater. Chem., 17, 1451, 10.1039/b701168g
Lu, 2008, Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors, Nanotechnology, 19, 405504, 10.1088/0957-4484/19/40/405504
Bi, 2013, Amorphous TiO2 nanotube arrays on Ti foam for rechargeable lithium and sodium batteries, J. Power Sources, 222, 461, 10.1016/j.jpowsour.2012.09.019
Altomare, 2013, H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity, Appl. Catal. B: Environ., 136–137, 81, 10.1016/j.apcatb.2013.01.054
Han, 2013, Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells, Chem. Commun., 49, 2810, 10.1039/c3cc40439k
Varghese, 2009, High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, Nano Lett., 9, 731, 10.1021/nl803258p
Zhu, 2012, Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays, J. Phys. Chem. C, 116, 11895, 10.1021/jp301884x
Liu, 2012, Aluminum storage behavior of anatase TiO2nanotube arrays in aqueous solution for aluminum ion batteries, Energy Environ. Sci., 5, 9743, 10.1039/c2ee22987k
Feng, 2013, A photoelectrochemical immunosensor for tris(2,3-dibromopropyl) isocyanurate detection with a multiple hybrid CdTe/Au–TiO2nanotube arrays, Analyst, 138, 5726, 10.1039/c3an00956d
Ng, 2010, Construction of self-organized free-standing TiO2nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol., 85, 1061, 10.1002/jctb.2395
Chou, 2013, Preparation of high-aspect-ratio TiO2 nanotube arrays for the photocatalytic reduction of NO in air streams, Chem. Eng. J., 225, 734, 10.1016/j.cej.2013.03.124
Feng, 2013, Visible-light induced efficiently oxidative decomposition of p-nitrophenol by CdTe/TiO2 nanotube arrays, Chem. Eng. J., 215–216, 591, 10.1016/j.cej.2012.11.044
Cong, 2012, Synthesis of α-Fe2O3/TiO2nanotube arrays for photoelectro-Fenton degradation of phenol, Chem. Eng. J., 191, 356, 10.1016/j.cej.2012.03.031
Wang, 2009, Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol withTiO2nanotubefabricated by anodic oxidation method, Chem. Eng. J., 145, 30, 10.1016/j.cej.2008.05.025
Liu, 2008, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays, Environ. Sci. Technol., 42, 8547, 10.1021/es8016842
Lin, 2008, Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications, Chem. Commun., 44, 6031, 10.1039/b813937g
Yu, 2010, Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2nanotube array Films, J. Phys. Chem. C, 114, 19378, 10.1021/jp106324x
Agarwal, 2010, MoO3in self-organized TiO2nanotubes for enhanced photocatalytic activity, Chem. Asian J., 5, 66, 10.1002/asia.200900369
Isimjan, 2010, Photocatalytic activities ofPt/ZIF-8loaded highly ordered TiO2nanotubes, J. Mater. Chem., 20, 10241, 10.1039/c0jm02152k
Granqvist, 2009, Progress in chromogenics: new results for electrochromic and thermochromic materials and devices, Sol. Energy Mater. Sol. Cells, 93, 2032, 10.1016/j.solmat.2009.02.026
Dinh, 2003, Electrochromic properties of TiO2anatase thin films prepared by a dipping sol–gel method, Thin Solid Films, 423, 70, 10.1016/S0040-6090(02)00948-3
Wang, 2006, Electrochromic properties of sputtered TiO2thin films, J. Solid-State Electrochem., 10, 255, 10.1007/s10008-005-0690-6
Wang, 2008, Electrochromic properties of TiO2thin films prepared by chemical solution deposition method, J. Phys. Chem. Solids, 69, 451, 10.1016/j.jpcs.2007.07.113
Chen, 2012, Hydrothermally processed TiO2nanowire electrodes with antireflective and electrochromic properties, ACS Nano, 6, 6633, 10.1021/nn300787r
Dinh, 2011, Highly-efficient electrochromic performance of nanostructured TiO2 films made by doctor blade technique, Sol. Energy Mater. Sol. Cells, 95, 618, 10.1016/j.solmat.2010.09.028
Ghicov, 2006, TiO2nanotubes: H+ insertion and strong electrochromic effects, Electrochem. Commun., 8, 528, 10.1016/j.elecom.2006.01.015
Hanzu, 2013, In situ study of electrochromic properties of self-assembled TiO2 nanotubes, C. R. Chim., 16, 96, 10.1016/j.crci.2012.11.005
Song, 2011, Multistage coloring electrochromic device based on TiO2nanotube arrays modified with WO3nanoparticles, Adv. Funct. Mater., 21, 1941, 10.1002/adfm.201002258
Lee, 2012, Anodically formed transparent mesoporous TiO2electrodes for high electrochromic contrast, J. Mater. Chem., 22, 9821, 10.1039/c2jm31244a
Ghicov, 2008, High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes, Small, 4, 1063, 10.1002/smll.200701244
Periyat, 2010, Rapid microwave synthesis of mesoporous TiO2for electrochromic displays, J. Mater. Chem., 20, 3650, 10.1039/b924341k
Cai, 2013, Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array, J. Phys. Chem. C, 117, 15967, 10.1021/jp4056939
Jiang, 2013, Preparation of ordered mesoporous alumina-doped titania films with high thermal stability and their application to high-speed passive-matrix electrochromic displays, Chem. Eur. J., 19, 10958, 10.1002/chem.201300737
Yao, 2013, Electrochromic properties of TiO2nanotubes coated with electrodeposited MoO3, Nanoscale, 5, 10353, 10.1039/c3nr03666a
So, 2012, Ultrafast growth of highly ordered anodic TiO2nanotubes in lactic acid electrolytes, J. Am. Chem. Soc., 134, 11316, 10.1021/ja301892g
Richardson, 2012, Environmental mass spectrometry: emerging contaminants and current issues, Anal. Chem., 84, 747, 10.1021/ac202903d
Wang, 2006, Titania-nanotube-array based photovoltaic cells, Appl. Phys. Lett., 89, 023508, 10.1063/1.2221502
Lu, 2012, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett., 12, 1690, 10.1021/nl300173j
Chen, 2011, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746, 10.1126/science.1200448
Kang, 2013, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting, J. Mater. Chem., 1, 5766, 10.1039/c3ta10689f
Bondarenko, 2005, Variable Mott–Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy, J. Solid-State Electrochem., 9, 845, 10.1007/s10008-005-0025-7
Lee, 1994, Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition, Thin Solid Films, 237, 105, 10.1016/0040-6090(94)90245-3
Zhang, 2012, Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays, Energy Environ. Sci., 5, 6506, 10.1039/c2ee03461a
Shankar, 2007, Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnology, 18, 065707, 10.1088/0957-4484/18/6/065707
Wang, 2011, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett., 11, 3026, 10.1021/nl201766h
Mor, 2006, A review on highly ordered, vertically oriented TiO2nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 90, 2011, 10.1016/j.solmat.2006.04.007
Liu, 2008, Electron field emission of a nitrogen-doped TiO2 nanotube array, Nanotechnology, 19, 025606, 10.1088/0957-4484/19/02/025606
Xiao, 2007, TiO2nanotube arrays fabricated by anodization in different electrolytes for biosensing, Electrochem. Commun., 9, 2441, 10.1016/j.elecom.2007.07.020
Asthana, 2012, Deformation-driven electrical transport in amorphous TiO2nanotubes, Appl. Phys. A Mater. Sci. Process., 109, 127, 10.1007/s00339-012-7040-1
Yu, 2009, Enhancing solar cell efficiencies through 1-D nanostructures, Nanoscale Res. Lett., 4, 1, 10.1007/s11671-008-9200-y