Computational adequacy for recursive types in models of intuitionistic set theory

A. Simpson1
1LFCS, Division of Informatics, University of Edinburgh, UK

Tóm tắt

We present a general axiomatic construction of models of FPC, a recursively typed lambda-calculus with call-by-value operational semantics. Our method of construction is to obtain such models as full subcategories of categorical models of intuitionistic set theory. This allows us to obtain a notion of model that encompasses both domain-theoretic and realizability models. We show that the existence of solutions to recursive domain equations, needed for the interpretation of recursive types, depends on the strength of the set theory. The internal set theory of an elementary topos is not strong enough to guarantee their existence. However, solutions to recursive domain equations do exist if models of intuitionistic Zermelo-Fraenkel set theory are used instead We apply this result to interpret FPC, and we provide necessary and sufficient conditions on a model for the interpretation to be computationally adequate, i.e. for the operational and denotational notions of termination to agree.

Từ khóa

#Set theory #Flexible printed circuits #Equations #Sufficient conditions #Informatics #Computational modeling #Logic #Computer science

Tài liệu tham khảo

10.1016/S0168-0072(00)00014-2 10.1017/S0960129597002387 10.1007/978-1-4471-0615-9 10.1109/LICS.1991.151640 10.1017/CBO9780511752483 taylor, 1999, Practical Foundations longley, 1995, Realizability Toposes and Language Semantics jacobs, 1999, Categorical Logic and Type Theory 10.1016/S0022-4049(96)00108-9 hyland, 1991, First steps in synthetic domain theory, Category Theory Proc Como 1990, 131 10.1017/S0305004100057534 10.1017/S0960129500001481 10.1109/LICS.1990.113762 10.1006/inco.1994.1017 10.1016/0304-3975(77)90044-5 plotkin, 1985, Denotational Semantics With Partial Functions 10.1017/S096012959900273X rosolini, 1986, Continuity and Effectivity in Topoi 10.1016/S0049-237X(09)70162-4 scott, 1980, Relating theories of the ?-calculus, To H B Curry, 403 simpson, 1992, Recursive types in Kleisli categories 10.1007/3-540-63172-0_36 10.1017/CBO9780511526565 10.1016/S0049-237X(09)70129-6 10.1007/3-540-57182-5_14 10.1007/10703163_22 10.1007/BFb0084215 10.1109/LICS.1990.113772 10.1137/0211062 10.1016/S0304-3975(00)00221-8 10.1109/LICS.1999.782592 10.1109/LICS.1997.614954 10.1016/0890-5401(92)90019-C freyd, 1992, Remarks on algebraically compact categories, Applications of Categories in Computer Science, 95, 10.1017/CBO9780511525902.006