H-surfaces in Lorentzian manifolds
Tóm tắt
We consider surfaces of prescribed mean curvature in a Lorentzian manifold and show the existence of a foliation by surfaces of constant mean curvature.
Tài liệu tham khảo
Avez, A.: Essais de géometrie riemannienne hyperbolique global-applications à la rélativité générale. Ann. Inst. Fourier13, 105–190 (1963)
Bancel, D.: Problème aux limites pour les hypersurfaces maximales Lorentziennes. Rend. Circolo Mat. Palermo, Ser. II,28, 183–190 (1979)
Bartnik, R., Simon, L.: Space-like hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys.87, 131–152 (1982)
Brill, D., Flaherty, F.: Isolated maximal surfaces in space-time. Commun. Math. Phys.50, 157–165 (1976)
Brill, D., Flaherty, F.: Maximizing properties of extremal surfaces in general relativity. Ann. Inst. Henri Poincaré, A,28, 335–347 (1978)
Budic, R. et al.: On the determination of Cauchy surfaces from intrinsic properties. Commun. Math. Phys.61, 87–95 (1978)
Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Proc. Symp. Pure Math.25, 223–230 (1970)
Cheng, S.Y., Yau, S.-T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math.104, 407–419 (1976)
Choquet-Bruhat, Y.: Maximal submanifolds and submanifolds with constant mean extrinsic curvature of a Lorentzian manifold. Ann. Sc. Norm. Sup. Pisa, Sér. IV,3, 361–376 (1976)
Choquet-Bruhat, Y., Fischer, A.E., Marsden, J.E.: Maximal hypersurfaces and positivity of mass. In: Isolated gravitating systems in general relativity. Ehlers, J. (ed.). Italian Physical Society 1979, pp. 396–456
Eisenhart, L.P.: Riemannian geometry. Princeton: Princeton University Press 1964
Gerhardt, C.: Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature. Math. Z.139, 173–198 (1974)
Gerhardt, C.: Evolutionary surfaces of prescribed mean curvature. J. Differential Equations36, 139–172 (1980)
Geroch, R.P.: The domain of dependence. J. Math. Phys.11, 437–449 (1970)
Geroch, R.P., Horowitz, G.T.: Global structure of space-time. In: General relativity. An Einstein centenary survey. Hawking, S.W., Israel, W. (eds.). Cambridge: Cambridge University Press 1979, pp. 212–293
Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977
Goddard, A.J.: Foliations of space-time by space-like hypersurfaces of constant mean curvature. Commun. Math. Phys.54, 279–282 (1977)
Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. In: Lecture Notes in Mathematics, Vol. 55. Berlin, Heidelberg, New York: Springer 1968
Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge: Cambridge University Press 1973
Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. New York: Academic Press 1980
Lloyd, N.G.: Degree theory. Cambridge: Cambridge University Press 1978
Marsden, J.E., Tipler, F.J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep.66, 109–139 (1980)
Stampacchia, G.: Equations elliptique du second ordre à coefficients discontinus. Montréal: Les Presses de l'Université 1966
Treibergs, A.E.: Entire space-like hypersurfaces of constant mean curvature in Minkowski space. Invent. Math.66, 39–56 (1982)
Trudinger, N.S.: Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations. Invent. Math.61, 67–79 (1980)