H-surfaces in Lorentzian manifolds

Springer Science and Business Media LLC - Tập 89 - Trang 523-553 - 1983
Claus Gerhardt1
1Institut für Angewandte Mathematik, Universität Heidelberg, Heidelberg, Federal Republic of Germany

Tóm tắt

We consider surfaces of prescribed mean curvature in a Lorentzian manifold and show the existence of a foliation by surfaces of constant mean curvature.

Tài liệu tham khảo

Avez, A.: Essais de géometrie riemannienne hyperbolique global-applications à la rélativité générale. Ann. Inst. Fourier13, 105–190 (1963) Bancel, D.: Problème aux limites pour les hypersurfaces maximales Lorentziennes. Rend. Circolo Mat. Palermo, Ser. II,28, 183–190 (1979) Bartnik, R., Simon, L.: Space-like hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys.87, 131–152 (1982) Brill, D., Flaherty, F.: Isolated maximal surfaces in space-time. Commun. Math. Phys.50, 157–165 (1976) Brill, D., Flaherty, F.: Maximizing properties of extremal surfaces in general relativity. Ann. Inst. Henri Poincaré, A,28, 335–347 (1978) Budic, R. et al.: On the determination of Cauchy surfaces from intrinsic properties. Commun. Math. Phys.61, 87–95 (1978) Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Proc. Symp. Pure Math.25, 223–230 (1970) Cheng, S.Y., Yau, S.-T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math.104, 407–419 (1976) Choquet-Bruhat, Y.: Maximal submanifolds and submanifolds with constant mean extrinsic curvature of a Lorentzian manifold. Ann. Sc. Norm. Sup. Pisa, Sér. IV,3, 361–376 (1976) Choquet-Bruhat, Y., Fischer, A.E., Marsden, J.E.: Maximal hypersurfaces and positivity of mass. In: Isolated gravitating systems in general relativity. Ehlers, J. (ed.). Italian Physical Society 1979, pp. 396–456 Eisenhart, L.P.: Riemannian geometry. Princeton: Princeton University Press 1964 Gerhardt, C.: Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature. Math. Z.139, 173–198 (1974) Gerhardt, C.: Evolutionary surfaces of prescribed mean curvature. J. Differential Equations36, 139–172 (1980) Geroch, R.P.: The domain of dependence. J. Math. Phys.11, 437–449 (1970) Geroch, R.P., Horowitz, G.T.: Global structure of space-time. In: General relativity. An Einstein centenary survey. Hawking, S.W., Israel, W. (eds.). Cambridge: Cambridge University Press 1979, pp. 212–293 Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977 Goddard, A.J.: Foliations of space-time by space-like hypersurfaces of constant mean curvature. Commun. Math. Phys.54, 279–282 (1977) Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. In: Lecture Notes in Mathematics, Vol. 55. Berlin, Heidelberg, New York: Springer 1968 Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge: Cambridge University Press 1973 Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. New York: Academic Press 1980 Lloyd, N.G.: Degree theory. Cambridge: Cambridge University Press 1978 Marsden, J.E., Tipler, F.J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep.66, 109–139 (1980) Stampacchia, G.: Equations elliptique du second ordre à coefficients discontinus. Montréal: Les Presses de l'Université 1966 Treibergs, A.E.: Entire space-like hypersurfaces of constant mean curvature in Minkowski space. Invent. Math.66, 39–56 (1982) Trudinger, N.S.: Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations. Invent. Math.61, 67–79 (1980)