Enhanced carbon monoxide sensing properties of TiO2 with exposed (0 0 1) facet: A combined first-principle and experimental study

Applied Surface Science - Tập 442 - Trang 507-516 - 2018
Yuxuan Zhang1, Wen Zeng1, Hong Ye2, Yanqiong Li3
1College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China
2College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
3School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, China

Tài liệu tham khảo

Anukunprasert, 2005, The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2, Sci. Technol. Adv. Mater., 6, 359, 10.1016/j.stam.2005.02.020 Zhu, 2017, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sens. Actuators. A, 267, 242, 10.1016/j.sna.2017.10.021 Fine, 2010, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors (Basel), 10, 5469, 10.3390/s100605469 Zhao, 2015, Structure, synthesis, and applications of TiO2 nanobelts, Adv. Mater., 27, 2557, 10.1002/adma.201405589 Zhu, 2018, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties, Appl. Surf. Sci., 427, 281, 10.1016/j.apsusc.2017.08.229 Moon, 2006, Orientation dependence of gas sensing properties of TiO2 films, Sens. Actuators, B, 115, 123, 10.1016/j.snb.2005.08.024 Hayakawa, 2000, Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor, Sens. Actuators, B, 62, 55, 10.1016/S0925-4005(99)00303-2 Dutta, 2006, Correlation of catalytic activity and sensor response in TiO2 high temperature gas sensors, Sens. Actuators, B, 115, 1, 10.1016/j.snb.2005.08.020 Dar, 2014, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells, J. Mater. Chem. A, 2, 1662, 10.1039/C3TA14130F Yang, 2016, Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment, Environ. Sci. Technol., 50, 11888, 10.1021/acs.est.6b03540 Sajan, 2015, TiO2 nanosheets with exposed 001 facets for photocatalytic applications, Nano Res., 9, 3, 10.1007/s12274-015-0919-3 Perillo, 2012, The gas sensing properties at room temperature of TiO2 nanotubes by anodization, Sens. Actuators, B, 171–172, 639, 10.1016/j.snb.2012.05.047 Zhu, 2017, A novel coral-like ZnO and its gas sensing, Mater. Lett., 209, 244, 10.1016/j.matlet.2017.08.020 Liu, 2016, Fabrication of lotus-like Au@TiO2 nanocomposites with enhanced gas-sensing properties, Sens. Actuators, B, 236, 490, 10.1016/j.snb.2016.06.039 Zeng, 2012, Carbon monoxide sensing mechanism of highly oriented TiO2 from first principles, Physica E, 44, 1567, 10.1016/j.physe.2012.03.029 Yu, 2017, Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance, Mater. Lett., 206, 80, 10.1016/j.matlet.2017.06.119 Yang, 2008, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453, 638, 10.1038/nature06964 Han, 2009, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc., 131, 3152, 10.1021/ja8092373 Selloni, 2008, Crystal growth: Anatase shows its reactive side, Nat. Mater., 7, 613, 10.1038/nmat2241 Yang, 2009, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets, J. Am. Chem. Soc., 131, 4078, 10.1021/ja808790p Gong, 2005, Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface, J. Phys. Chem. B, 109, 19560, 10.1021/jp055311g Yang, 2015, Enhanced gas-sensing properties of the hierarchical TiO2 hollow microspheres with exposed high-energy 001 crystal facets, ACS Appl. Mater. Interfaces, 7, 24902, 10.1021/acsami.5b08372 Zeng, 2017, Hydrothermal synthesis and gas sensing property of titanium dioxide regular nano-polyhedron with reactive (001) facets, J. Mater. Sci. - Mater. Electron., 28, 13821, 10.1007/s10854-017-7228-4 Gribb, 1997, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral., 82, 717, 10.2138/am-1997-7-809 Zhu, 2018, Volatile organic compound sensing based on coral rock-like ZnO, Mater. Res. Bull., 100, 259, 10.1016/j.materresbull.2017.12.043 Zhang, 2010, Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets, Cryst. Growth Des., 10, 1130, 10.1021/cg900961k Chen, 2010, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, J. Am. Chem. Soc., 132, 6124, 10.1021/ja100102y Wen, 2011, Synthesis of high-reactive facets dominated anatase TiO2, J. Mater. Chem., 21, 7052, 10.1039/c1jm00068c Liu, 2009, Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN, J. Am. Chem. Soc., 131, 12868, 10.1021/ja903463q Abbasi, 2017, A novel strategy for SOx removal by N-doped TiO2 /WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT, Comput. Theor. Chem., 1114, 8, 10.1016/j.comptc.2017.05.020 Jo, 2009, Gas sensing properties of WO3 doped rutile TiO2 thick film at high operating temperature, Curr. Appl. Phys., 9, e235, 10.1016/j.cap.2009.06.053 Park, 2010, Structure and CO gas sensing properties of electrospun TiO2 nanofibers, Mater. Lett., 64, 255, 10.1016/j.matlet.2009.10.052 Karunagaran, 2007, TiO2 thin film gas sensor for monitoring ammonia, Mater. Charact., 58, 680, 10.1016/j.matchar.2006.11.007 Abbasi, 2017, An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SOx molecules: a density functional theory study, New J. Chem., 41, 12569, 10.1039/C7NJ02140B Abbasi, 2016, N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations, Environ. Sci.-Nano, 3, 1153, 10.1039/C6EN00159A Abbasi, 2016, Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: a DFT study, J. Sulfur Chem., 38, 52, 10.1080/17415993.2016.1229782 Fu, 2016, TiO2 mesocrystals with exposed 001 facets as efficient photocatalysts, J. Alloys Compd., 680, 80, 10.1016/j.jallcom.2016.04.121 Gong, 2006, Steps on anatase TiO2 (101), Nat. Mater., 5, 665, 10.1038/nmat1695 Meng, 2016, Enhanced photocatalytic H 2 -production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets., Appl. Catal. B, Environ., 198, 286, 10.1016/j.apcatb.2016.05.074 Zeng, 2012, Impact of Nb doping on gas-sensing performance of TiO2 thick-film sensors, Sens. Actuators, B, 166–167, 141, 10.1016/j.snb.2012.02.016 Gui, 2008, Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature, Microelectron. J., 39, 1120, 10.1016/j.mejo.2008.01.052 Teleki, 2006, Sensing of organic vapors by flame-made TiO2 nanoparticles, Sens. Actuators, B, 119, 683, 10.1016/j.snb.2006.01.027 Kresse, 1996, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev. B, 140, A1133, 10.1103/PhysRev.140.A1133 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Liu, 2014, Structural, elastic, electronic and optical properties of various mineral phases of TiO2 from first-principles calculations, Phys. Scr., 89, 075703, 10.1088/0031-8949/89/7/075703 Youmbi, 2014, Structure of CoO(001) surface from DFT+U calculations, Surf. Sci., 621, 1, 10.1016/j.susc.2013.10.012 Wang, 2010, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures, Langmuir, 26, 12841, 10.1021/la100910u Xiang, 2011, Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant 001 facets, Chin. J. Catal., 32, 525, 10.1016/S1872-2067(10)60186-6 Liu, 2017, Abnormal p-type sensing response of TiO 2 nanosheets with exposed 001 facets, J. Alloys Compd., 705, 112, 10.1016/j.jallcom.2017.02.118 Martinez-Erro, 2016, Base-catalyzed stereospecific isomerization of electron-deficient allylic alcohols and ethers through ion-pairing, J. Am. Chem. Soc., 138, 13408, 10.1021/jacs.6b08350 K.P. Huber, G. Herzberg, in Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecular 642. Van Nostrand Reinhold, New York, 1979. Yang, 2011, Controllable nanocarving of anatase TiO2 single crystals with reactive {001} facets, Chemistry (Easton), 17, 6615 Yang, 2017, Anatase TiO2 hierarchical microspheres with selectively etched high-energy 001 crystal facets for high-performance acetone sensing and methyl orange degradation, Mater. Res. Bull., 94, 272, 10.1016/j.materresbull.2017.06.007 Bates, 1997, A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations, Surf. Sci., 385, 386, 10.1016/S0039-6028(97)00265-3 Wanbayor, 2012, First-principles investigation of adsorption of N2O on the anatase TiO2 (101) and the CO pre-adsorbed TiO2 surfaces, Comp. Mater. Sci., 58, 24, 10.1016/j.commatsci.2012.01.015 Wanbayor, 2011, First principles theoretical study of the hole-assisted conversion of CO to CO2 on the anatase TiO2(101) surface, J. Chem. Phys., 134, 104701, 10.1063/1.3562366 Scaranto, 2009, A DFT study of CO adsorbed on clean and hydroxylated anatase TiO2(001) surfaces, Mol. Phys., 107, 1997, 10.1080/00268970903084961 Zeng, 2011, Hydrogen sensing and mechanism of M-doped SnO2 (M=Cr3+, Cu2+ and Pd2+) nanocomposite, Sens. Actuators, B, 160, 455, 10.1016/j.snb.2011.08.008