Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor

Springer Science and Business Media LLC - Tập 5 - Trang 1168-1179 - 2022
Huayu Liu1, Ting Xu1, Qidi Liang1, Qingshuang Zhao1, Dawei Zhao1,2, Chuanling Si1
1Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
2Key Laboratory On Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, People’s Republic of China

Tóm tắt

The investigation of electrodes with excellent electrochemical and mechanical properties is the key to achieve flexible supercapacitors. Herein, a nanocellulose-based carbon aerogel with 3D porous structure for high performance composite electrodes of compressible supercapacitors is proposed. Cellulose nanofibril (CNF) is used to construct the elastic network structure of carbon aerogel. Graphene oxide (GO) mainly acted as the skeleton in the carbon aerogel to prevent shrinkage of nanocellulose during the carbonization process. The as-prepared carbon aerogel displayed outstanding compressibility (undergoing a strain of 80%) and elasticity (96% stress retention after 2000 compressive cycles at 30% strain). Furthermore, highly flexible and solid-state supercapacitors using cellulose nanofibrils/reduced graphene oxide (CNF/RGO) carbon aerogels as electrodes are fabricated. Due to the porous structure and outstanding mechanical properties of the electrodes, the assembled supercapacitors exhibit excellent electrochemical properties with good cycle stability (82% retention after 5000 cycles). Therefore, this research provides a simple and effective method for fabricating well-designed structured electrodes for compressive energy storage devices.

Tài liệu tham khảo

Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater 33:e2000619. https://doi.org/10.1002/adma.202000619 Zhao D, Zhang Q, Chen W, Yi X, Liu S, Wang Q, Liu Y, Li J, Li X, Yu H (2017) Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Inter 9:13213–13222. https://doi.org/10.1021/acsami.7b01852 Hu H, Hua T (2017) An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J Mater Chem A 5:19639–19648. https://doi.org/10.1039/C7TA04735E Tian W, VahidMohammadi A, Reid MS, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi MM (2019) Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv Mater 31:1902977. https://doi.org/10.1002/adma.201902977 Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Zhang K, Si C. (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32:2113082. https://doi.org/10.1002/adfm.202113082 Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. https://doi.org/10.1039/C5CS00580A Sheng N, Chen S, Yao J, Guan F, Zhang M, Wang B, Wu Z, Ji P, Wang H (2019) Polypyrrole@TEMPO-oxidized bacterial cellulose/reduced graphene oxide macrofibers for flexible all-solid-state supercapacitors. Chem Eng J 368:1022–1032. https://doi.org/10.1016/j.cej.2019.02.173 Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo, Z (2021) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Enginee Sci. https://doi.org/10.30919/es8d588 Wang Y, Lin J, Fan J, Ding T, Zhang J (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Enginee Sci 9:50–59. https://doi.org/10.30919/es8d903 Patil S, Bhat T, Teli A, Beknalkar S, Dhavale S, Faras M, Karanjkar M, Patil P (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Enginee Sci 12:38–51. https://doi.org/10.30919/es8d1140 Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817 Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crop Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425 Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200. https://doi.org/10.1007/s10853-020-05157-6 Guo J, Li X, Liu H, Young D, Sang G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:1–14. https://doi.org/10.1007/s42114-021-00211-6 Guo J, Chen Z, Abdul W, Kong J, Khan M, Young D, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:1–9. https://doi.org/10.1007/s42114-021-00242-z Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K (2021) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 33:2005569. https://doi.org/10.1002/adma.202005569 Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72. https://doi.org/10.1016/j.jmst.2021.08.049 Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00425-2 Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Li H, Xie H, Zhang X, Ma M, Si C (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740 Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020) Bacterial cellulose based composite scafolds for biomedical applications: a review. ACS Sustain Chem Eng 8:7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125 Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020 Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crop Prod 130:184–197. https://doi.org/10.1016/j.indcrop.2018.12.082 An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crop Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009 Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2 Xu R, Du H, Liu C, Liu H, Wu M, Zhang X, Si C, Li B (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834. https://doi.org/10.1016/j.jclepro.2021.127834 Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2021) Cellulose Nanomaterials for Oil Exploration Applications. Polym Rev. https://doi.org/10.1080/15583724.2021.2007121 Li Z, Liu J, Jiang K, Thundat T (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–169. https://doi.org/10.1016/j.nanoen.2016.04.036 Liu S, Du H, Liu K, Ma M, Kwon Y, Si C, Ji X, Choi S, Zhang X (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4:1367–1383. https://doi.org/10.1007/s42114-021-00344-8 Wang M, Shao C, Zhou S, Yang J, Xu F (2018) Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose 25:7329–7340. https://doi.org/10.1007/s10570-018-2080-0 Wang Y, Fu Q, Ning X, Chen G, Yao C (2020) Hydrothermal preparation of phyllostachys pubescens-nanocellulose graphene aerogel as a simple device for supercapacitors. BioResour 15:677–690. https://doi.org/10.15376/biores.15.1.677-690 Yang Q, Yang J, Gao Z, Li B, Xiong C (2019) Carbonized cellulose nanofibril/graphene oxide composite aerogels for high-performance supercapacitors. ACS Appl Energ Mater 3:1145–1151. https://doi.org/10.1021/acsaem.9b02195 Ma L, Liu R, Niu H, Xing L, Liu L, Huang Y (2016) Flexible and freestanding supercapacitor electrodes based on nitrogen-doped carbon networks/graphene/bacterial cellulose with ultrahigh areal capacitance. ACS Appl Mater Inter 8:33608–33618. https://doi.org/10.1021/acsami.6b11034 Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368 Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohyd Polym 99:74–83. https://doi.org/10.1016/j.carbpol.2013.08.032 Liu W, Du H, Liu K, Liu H, Xie H, Si C, Pang B, Zhang X (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr Polym 267:118220. https://doi.org/10.1016/j.carbpol.2021.118220 Wang H, Xie H, Du H, Wang X, Liu W, Duan Y, Zhang X, Sun L, Zhang X, Si C (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr Polym 239:116233. https://doi.org/10.1016/j.carbpol.2020.116233 Liu H, Liu K, Han X, Xie H, Si C, Liu W, Bae Y (2020) Cellulose nanofibrils-based hydrogels for biomedical applications: progresses and challenges. Curr Med Chem 27:4622–4646. https://doi.org/10.2174/0929867327666200303102859 Wang H, Du H, Liu K, Liu H, Xu T, Zhang S, Chen X, Zhang R, Li H, Xie H, Zhang X, Si C (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr Polym 266:118107. https://doi.org/10.1016/j.carbpol.2021.118107 Kang X, Lu Z, Feng W, Wang J, Fang X, Xu Y, Wang Y, Liu B, Ding T, Ma Y, Pan D, Patil R, Murugadoss V (2021) A novel phosphorous and silicon-containing benzoxazine: highly efficient multifunctional flame-retardant synergist for polyoxymethylene. Adv Compos Hybrid Mater 4:127–137. https://doi.org/10.1007/s42114-020-00198-6 Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W, Liao X, Chen L, Hagihara K, Li X, Ringer S, Ferry M (2021) Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Sci Adv 7:eabf3039. https://doi.org/10.1126/sciadv.abf3039 Saito T, Nishiyama Y, Putaux JL, Vignon M, Isoga A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. https://doi.org/10.1021/bm060154s Wang Y, Ji X, Liu S, Tian Z, Si C, Wang R, Yang G, Wang D (2022) Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00395-x Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C (2020) Biomass fractionation and lignin fractionation towards lignin valorization. Chemsuschem 13:4284–4295. https://doi.org/10.1002/cssc.202001491 Li X, Lu X, Nie S, Liang M, Yu Z, Duan B, Yang J, Xu R, Lu L, Si C (2020) Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Ind Crops Prod 145:112154. https://doi.org/10.1016/j.indcrop.2020.112154 Liu R, Dai L, Xu C, Wang K, Zheng C, Si C (2020) Lignin-based micro- and nanomaterials and their composites in biomedical applications. Chemsuschem 13:4266–4283. https://doi.org/10.1002/cssc.202000783 Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23:9723–9746. https://doi.org/10.1039/D1GC02841C Xiong R, Xu RX, Huang C, Smedt S, Braeckmans K (2021) Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 50:5746–5776. https://doi.org/10.1039/C9CS00839J Xu R, Si C, Kong F, Li X (2020) Synthesis of γ-valerolactone and its application in biomass conversion. J For Eng 5:20–28. https://doi.org/10.13360/j.issn.2096-1359.201904004 Yang J, Si C, Liu K, Liu H, Li X, Liang M (2020) Production of levulinic acid from lignocellulosic biomass and application. J For Eng 5:21–27. https://doi.org/10.13360/j.issn.2096-1359.201905013 Hummers J, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017 Tang X, Li W, Yu Z, Rafiee MA, Rafiee J, Yavari F, Koratkar N (2011) Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon 49:1258–1265. https://doi.org/10.1016/j.carbon.2010.11.044 Zhang Y, Fan W, Huang Y, Zhang C, Liu T (2015) Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors. Rsc Adv 5:1301–1308. https://doi.org/10.1039/C4RA13015D Chen Z, Zhuo H, Hu Y, Lai H, Liu L, Zhong L, Peng X (2020) Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv Funct Mater 30:1910292. https://doi.org/10.1002/adfm.201910292 Du H, Zhang M, Liu K, Parit M, Jiang Z, Zhang X, Li B, Si C (2022) Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994. https://doi.org/10.1016/j.cej.2021.131994 Xu T, Yang D, Zhang S, Zhao T, Zhang M, Yu Z (2021) Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 171:201–210. https://doi.org/10.1016/j.carbon.2020.08.071 Marcano D, Kosynkin D, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany L, Lu W, Tour J (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368 Ma Y, Liu D, Zhang X, Sui G (2017) De-sulfation of cellulose nanowhiskers and its effects on the dispersion behavior of graphene. J Disper Sci Technol 38:1798–1803. https://doi.org/10.1080/01932691.2017.1283512 Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:7923068. https://doi.org/10.1155/2018/7923068 Xie Z, Tian Z, Liu S, Ma H, Ji X, Si C (2021) Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00400-3 Chen L, Li J, Zhao Y, Li M, Li L, Chen L, Hou H (2021) Numerical simulation and optimization of indirect squeeze casting process. Engineered Science 13:65–70. https://doi.org/10.30919/es8d1157 Chen W, Zhao Y, Yang S, Zhang D, Hou H (2021) Three-dimensional phase-field simulations of the influence of diffusion interface width on dendritic growth of Fe-0.5wt.%C alloy. Adv Compos Hybrid Mater 4:371–378. https://doi.org/10.1007/s42114-021-00215-2 Ha H, Shanmuganathan K, Ellison C (2015) Mechanically stable thermally crosslinked poly (acrylic acid)/reduced graphene oxide aerogels. ACS Appl Mater Inter 7:6220–6229. https://doi.org/10.1021/acsami.5b00407 Wang M, Shao C, Zhou S, Yang J, Xu F (2017) Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Adv 7:38220–38230. https://doi.org/10.1039/C7RA05506D Zheng Q, Xie R, Fang L, Cai Z, Ma Z, Gong S (2018) Oxygen-deficient and nitrogen-doped MnO2 nanowire-reduced graphene oxide-cellulose nanofibril aerogel electrodes for high-performance asymmetric supercapacitors. J Mater Chem A 6:24407–24417. https://doi.org/10.1039/c8ta09374a Wang D, Yu H, Qi D, Ramasamy M, Yao J, Tang F, Tam K, Ni Q (2019) Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl Mater Inter 11:24435–24446. https://doi.org/10.1021/acsami.9b06527 Xu Y, Shi G, Duan X (2015) Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc Chem Res 48:1666–1675. https://doi.org/10.1021/acs.accounts.5b00117 Yu M, Yu T, Chen S, Guo Z, Seok I (2020) A facile synthesis of Ag/TiO2/rGO nanocomposites with enhanced visible light photocatalytic activity. ES Mater Manuf 7:64–69. https://doi.org/10.30919/esmm5f712 Jayachandiran J, Arivanandhan M, Padmaraj O, Jayavel R, Nedumaran D (2020) Investigation on ozone-sensing characteristics of surface sensitive hybrid RGO/WO3 nanocomposite films at ambient temperature. Adv Compos Hybrid Mater 3:16–30. https://doi.org/10.1007/s42114-020-00134-8 Zheng Q, Kvit A, Cai Z, Ma Z, Gong S (2017) A freestanding cellulose nanofibril-reduced graphene oxide-molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. J Mater Chem A 5:12528–12541. https://doi.org/10.1039/c7ta03093b Xiao M, Zhu J, Feng L, Liu C, Xing W (2015) Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv Mater 27:2521–2527. https://doi.org/10.1002/adma.201500262 Zhuo H, Hu Y, Chen Z, Zhong L (2019) Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohyd Polym 215:322–329. https://doi.org/10.1016/j.carbpol.2019.03.101 Zhang Z, Li L, Qing Y, Lu X, Wu Y, Yan N, Yang W (2019) Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor. J Phys Chem C 123:23374–23381. https://doi.org/10.1021/acs.jpcc.9b06058 Li D, Gong Y, Pan C (2016) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep-UK 6:1–7. https://doi.org/10.1038/srep29788 Zhang X, Li H, Zhang W, Huang Z, Tsui C, Lu C, He C, Yang Y (2019) In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochim Acta 301:55–62. https://doi.org/10.1016/j.electacta.2019.01.166 Liu Z, Zhang J, Liu J, Long Y, Fang L, Wang Q, Liu T (2020) Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. J Mater Chem A 8:6219–6228. https://doi.org/10.1039/C9TA12424A Qing Y, Liao Y, Liu J, Tian C, Xu H, Wu Y (2021) Research progress of wood-derived energy storage materials. J For Eng 6:1–13. https://doi.org/10.13360/j.issn.2096-1359.202012046 Yang N, Zhang Y, Jiang J, Liu L, Duan J (2021) Preparation and characterization of PAM/PEGDA phase change energy storage conductive wood films. J For Eng 6:89–95. https://doi.org/10.13360/j.issn.2096-1359.202103001 Wu J, Wang L, Shan X, Wang X (2021) Preparation of 3D-W/rGO conductive materials by hot-pressing reduction method. J For Eng 6:84–93. https://doi.org/10.13360/j.issn.2096-1359.202007011 Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2021) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00317-x