Review of radiation sources, calibration facilities and simulated workplace fields
Tài liệu tham khảo
Amgarou, 2009, Neutron spectrometry with a passive Bonner sphere system around medical LINAC and evaluation of the associated unfolding uncertainties, IEEE Trans. on Nucl. Sci., 56, 2885, 10.1109/TNS.2009.2026416
Bartlett, 2004, Radiation protection aspects of the cosmic radiation exposure of aircraft crew, Radiat. Prot. Dosim, 109, 349, 10.1093/rpd/nch311
Beck, 2009, Overview of research on aircraft crew dosimetry during the last solar cycle, Radiat. Prot. Dosim, 136, 244, 10.1093/rpd/ncp158
Bilski, 2006, 2006
Böttger, 1989, Problems associated with the production of monoenergetic neutron, Nucl. Instr. Meth., A282, 358, 10.1016/0168-9002(89)90167-8
Chartier, 1992, Experimental assembly for the simulation of realistic neutron spectra, Radiat. Prot. Dosim., 44, 125, 10.1093/oxfordjournals.rpd.a081416
Chartier, 1997, Recent developments in the specification and achievement of realistic neutron calibration fields, Radiat. Prot. Dosim., 70, 305, 10.1093/oxfordjournals.rpd.a031965
Chichester, 2006, Advanced compact accelerator neutron generator technology for active neutron interrogation field work, J. Radioanalytical Nucl. Chem., 271, 629, 10.1007/s10967-007-0318-7
Drosg, 1990, Sources of variable energy monoenergetic neutrons for fusion-related applications, Nucl. Sci. Eng., 106, 279, 10.13182/NSE90-A29056
Drosg, M., 1999. Monoenergetic neutron production by two-body reactions in the energy range from 0.0001 to 500 MeV – An overview TCM Meeting of IAEA, Debrecen, Hungary.
d’Errico, 2007, Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part I: scope and methods of the project, Radiat. Prot. Dosim., 125, 275, 10.1093/rpd/ncm169
Garin, P., 2008. IFMIF: Status and developments, Proceedings of EPAC08, Genoa, Italy.
Goldhagen, 2002, Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high altitude plane, Nucl. Instrum. Meth. A, 476, 42, 10.1016/S0168-9002(01)01386-9
Gressier, 2004, Characterisation of the IRSN CANEL/T400 facility produ cing realistic neutron fields for calibration and test purposes, Radiat. Prot. Dosim., 110, 523, 10.1093/rpd/nch227
Gualdrini, 2004, Developing a thermal neutron irradiation system for the calibration of personal dosemeters in terms of HP(10), Radiat. Prot. Dosim., 110, 43, 10.1093/rpd/nch201
Hamlin, S., 2002. Industrial Applications of Sealed Radiation Sources and Alternative Non Nuclear Technologies, Report of Contract 68-D-00–210, prepared for U.S Environment Protection Agency, 30 September.
Harano, H., Matsumoto, T., Tanimura, Y., Shikaze, Y., Baba, M., Nakamura, T., Monoenergetic and Quasi-Monoenergetic Neutron Reference Fields in Japan, Radiat. Meas. This issue.
Hawkes, 2007, Progress in providing neutron standards at the UK National Physical Laboratory, Nucl. Instrum. Meth. Phys. Res. A, 580, 183, 10.1016/j.nima.2007.05.079
ICRU Report 63, 2000
International Organization for Standardization, 2001. Reference neutron radiations – Part 1: Characteristics and methods of production. Report 8529–1 (Geneva – ISO).
International Organization for Standardization, 2008. Reference neutron radiations – Part 1: Characteristics and methods of production of simulated workplace neutron fields. Report 12789–1 (Geneva – ISO).
Kim, 2007, Determination of the neutron fluence spectra in the neutron therapy room of KIRAMS, Radiat. Prot. Dosim, 126, 384, 10.1093/rpd/ncm079
Knoll, 1989
Lacoste, 2007, Design of a new IRSN thermal neutron field facility using Monte-Carlo simulations, Radiat. Prot. Dosim., 126, 58, 10.1093/rpd/ncm013
Lacoste, 2004, Characterisation of the IRSN graphite moderated Americium-Beryllium neutron field, Radiat. Prot. Dosim., 110, 135, 10.1093/rpd/nch188
Lacoste, 2007, Bonner sphere neutron spectrometry at nuclear workplaces in the framework of the EVIDOS project, Radiat. Prot. Dosimetry, 125, 304, 10.1093/rpd/ncm161
Lamirand, V., Gressier, V., Moukaddam, M., Thomas, D.J., Sorieul, S., Liatard, E. Study of Scandium for production of monoenergetic neutron fields with energies below 100 keV, Radiat. Meas. (This issue).
de Laney, 2007
Lebreton, 2007, Experimental comparison of 241Am–Be neutron fluence energy distributions, Radiat. Prot. Dosim, 126, 3, 10.1093/rpd/ncm003
Luszik-Bhadra, 2007, Energy and direction distribution of neutrons in workplace fields: implication of the results from the EVIDOS project for the set-up of simulated workplace fields, Radiat. Prot. Dosim., 126, 151, 10.1093/rpd/ncm032
Martinetti, F., 2009. Estimation des doses dues aux neutrons secondaires reçues par les organes des patients traités par proton thérapie oculaire, IRSN PhD thesis.
McDonald, 1997, Current status of an ISO working document on reference radiations: characteristics and methods of production of simulated practical neutron fields, Radiat. Prot. Dosim., 70, 323, 10.1093/oxfordjournals.rpd.a031967
Mitaroff, 2002, The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space, Radiat. Prot. Dosim., 102, 7, 10.1093/oxfordjournals.rpd.a006075
Moller, T.R., Stovall, M., 2000. DIRAC Directory of Radiotherapy Centres, An introduction to the IAEA/WHO computerized database, Report IAEA DMRP/ARBR-2000-01.
Nakao, 2002, Development of quasi-monoenergetic neutron field and mesurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV, Nucl. Instrum. Meth. Phys. Rev. A, 476, 176, 10.1016/S0168-9002(01)01426-7
Noel, 2003, Treatment with neutrons: hadrontherapy part II: physical basis and clinical experience, Cancer/Radiothérapie, 7, 340, 10.1016/S1278-3218(03)00113-6
Nolte, 2004, Quasi-monoenergetic neutron reference fields in the energy range from thermal to 200 MeV, Radiat. Prot. Dosim., 110, 97, 10.1093/rpd/nch195
Normand, 1996, Single event upset at ground level, IEEE TNS, NS-43, 2742
Prokofiev, 2007, The TSL neutrons beam facility, Radiat. Prot. Dosim, 10.1093/rpd/ncm006
Prokofiev, A.V., Blomgren, J., Nolte, R., Platt, S., Röttger, S., Smirnov, A.N., 2008. Characterization of the ANITA Neutron Source for Accelerated SEE Testing at The Svedberg Laboratory, Proc. of 8th European Workshop on Radiation Effects on Components and Systems (RADECS), September 10–12, 2008, Jyväskylä, Finland. To be published in IEEE – TNS.
Rollet, 2009, Intercomparison of radiation protection devices in a high-energy stray neutron fields, Part I: Monte-Carlo simulations, Radiat. Meas, 44, 649, 10.1016/j.radmeas.2009.03.029
Röttger, S., Schäler, K., Nolte, R., A new simulated neutron work place field at PIAF, Radiat. Meas. This issue.
Rühm, 2009, Continuous measurement of secondary neutrons from cosmic radiation at mountain altitudes and close to the North Pole-A discussion in terms of H*(10), Radiat. Prot. Dosim., 10.1093/rpd/ncp161
Ryves, 1968, The construction and calibration of a standard thermal neutron flux facility at the National Physical Laboratory, J. Nucl. Energ, 22, 759, 10.1016/0022-3107(68)90048-8
Saegusa, 2004, Conceptual design of spectrum changeable neutron calibration fields in JAERI/FRS, Radiat. Prot. Dosim, 110, 91, 10.1093/rpd/nch196
Schuhmacher, 2004, Neutron calibration facilities, Radiat. Prot. Dosim, 110, 33, 10.1093/rpd/nch215
Schuhmacher, 2007, Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations, Radiat. Prot. Dosim., 125, 281, 10.1093/rpd/ncm167
Shinto, K., Vermare, C., Harami, T., Sugimoto, M., Garin, P., Maebara, S., Sakaki, H., O’hira, S., Okumura, Y., Mosnier, A., Ibarra, A., Facco, A., 2008. Progress of the accelerator in broader approach IFMIF/EVEDA project, Proc. of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33rd Linear Accelerator Meeting in Japan, August 6–8, Higashihiroshima, Japan.
Silari, 2007, Workplace characterization in mixed neutron-gamma fields, specific requirements and available methods at high energy accelerators, Radiat. Prot. Dosim., 124, 230, 10.1093/rpd/ncm395
Szabo, 1997, Some examples of industrial uses of neutron sources, Radiat. Prot. Dosim., 70, 193, 10.1093/oxfordjournals.rpd.a031941
Takada, 1996, Characterization of 22 and 33 MeV quasi-monoenergetic neutron fields for detector calibration at CYRIC, Nucl. Instr. Meth. Physics Research A, 372, 253, 10.1016/0168-9002(95)01247-8
Taniguchi, 2007, Development of a quasi-monoenergetic neutron field using the 7Li(p, n)7Be reaction in the energy range from 250 to 390 MeV at RCNP, Radiat. Prot. Dosim, 126, 23, 10.1093/rpd/ncm007
Tanimura, 2004, Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI, Radiat. Prot. Dosim, 110, 85, 10.1093/rpd/nch197
Tanimura, 2007, Construction of monoenergetic neutron calibration fields using Sc(p, n)Ti reactions at JAEA, Radiat. Prot. Dosimetry, 126, 8, 10.1093/rpd/ncm004
Taylor, 2004, A realistic field facility to simulate reactor spectra, Radiat. Prot. Dosim., 110, 111, 10.1093/rpd/nch191
Taylor, 2007, Results of field trials using the NPL simulated reactor neutron field facility, Radiat. Prot. Dosim., 126, 89, 10.1093/rpd/ncm018
Wiegel, 2002, Spectrometry using the PTB neutron multisphere spectrometer (NEMUS) at flight altitudes and at ground level, Nucl. Instrum. Meth, A 476, 52, 10.1016/S0168-9002(01)01387-0
Wiegel, 2009, Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry, Radiation Measurements, 44, 660, 10.1016/j.radmeas.2009.03.026
Yoshizawa, 2004, Neutron spectra and angular distributions of concrete-moderated neutron calibration fields at JAERI, Radiat. Prot. Dosim, 110, 91