Cutting Edge: TLR2-Deficient and MyD88-Deficient Mice Are Highly Susceptible toStaphylococcus aureusInfection

Journal of Immunology - Tập 165 Số 10 - Trang 5392-5396 - 2000
Osamu Takeuchi1,2, Katsuaki Hoshino1,2, Shizuo Akira1,2
1*Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; and
2†Core Research for Evolutional Science and Technology of Japan Science and Technology Corporation, Osaka, Japan

Tóm tắt

Abstract

Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.

Từ khóa


Tài liệu tham khảo

Lowy, F. D.. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520

Medzhitov, R., C. A. Janeway, Jr. 1997. Innate immunity: the virtues of a monclonal system of recognition. Cell 91: 295

Kopp, E. B., R. Medzhitov. 1999. The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 11: 13

Medzhitov, R., P. Preston-Hurburt, C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394

Rock, F. L., G. Hardiman, J. C. Timans, R. A. Kastelein, J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95: 588

Takeuchi, O., T. Kawai, H. Sanjo, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, K. Takeda, S. Akira. 1999. TLR6: a novel member of an expanding Toll-like receptor family. Gene 231: 59

Poltorak, A., X. He, I. Smirnova, M.-Y. Liu, C. V. Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085

Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, S. Akira. 1999. TLR4-deficient mice are hyporesponsive to LPS: evidence for TLR4 as the Lps gene product. J. Immunol. 162: 3749

Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, T. Ogawa, H. Takada, K. Takeda, S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443

Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274:17406.

Yoshimura, A., E. Lien, R. R. Ingalls, E. Tuomanen, R. Dziarski, D. Golenbock. 1999. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163: 1

Brightbill, D. H., H. D. Libraty, R. S. Krutzik, B. R. Yang, T. J. Belisle, R. J. Bleharski, M. Maitland, V. M. Norgard, E. S. Plevy, T. S. Smale, et al 1999. Host defense mechanisms triggered by microbial lipoproteins through Toll-Like receptors. Science 285: 732

Aliprantis, O. A., R. B. Yang, R. M. Mark, S. Suggett, B. Devaux, D. J. Radolf, R. G. Klimpel, P. Godowski, A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285: 736

Lien, E., T. J. Sellati, A. Yoshimura, T. H. Flo, G. Rawadi, R. W. Finberg, J. D. Carroll, T. Espevik, R. R. Ingalls, J. D. Radolf, D. T. Golenbock. 1999. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274: 33419

Underhill, D. M., A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811

Takeuchi, O., A. Kaufmann, K. Grote, T. Kawai, K. Hoshino, M. Morr, P. F. Muhlradt, S. Akira. 2000. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164: 554

Muzio, M., G. Natoli, S. Saccani, M. Levrero, A. Mantovani. 1998. The human Toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187: 2097

Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, C. A. Janeway, Jr. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2: 253

Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, S. Akira. 1998. Targeted disruption of the MyD 88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143

Kawai, T., O. Adachi, T. Ogawa, K. Takeda, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115

Takeuchi, O., K. Takeda, K. Hoshino, O. Adachi, T. Ogawa, S. Akira. 2000. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int, Immunol. 12: 113

O’Brien, A. D., D. L. Rosenstreich, I. Scher, G. H. Campbell, R. P. MacDermott, S. B. Formal. 1980. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124: 20

Nakane, A., M. Okamoto, M. Asano, M. Kohanawa, T. Minagawa. 1995. Endogenous gamma interferon, tumor necrosis factor, and interleukin-6 in Staphylococcus aureus infection in mice. Infect. Immun. 63: 1165

Sasaki, S., T. Miura, S. Nishikawa, K. Yamada, M. Hirasue, A. Nakane. 1998. Protective role of nitric oxide in Staphylococcus aureus infection in mice. Infect. Immun. 66: 1017