Cutting Edge: TLR2-Deficient and MyD88-Deficient Mice Are Highly Susceptible toStaphylococcus aureusInfection
Tóm tắt
Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.
Từ khóa
Tài liệu tham khảo
Medzhitov, R., C. A. Janeway, Jr. 1997. Innate immunity: the virtues of a monclonal system of recognition. Cell 91: 295
Kopp, E. B., R. Medzhitov. 1999. The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 11: 13
Medzhitov, R., P. Preston-Hurburt, C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394
Rock, F. L., G. Hardiman, J. C. Timans, R. A. Kastelein, J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95: 588
Takeuchi, O., T. Kawai, H. Sanjo, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, K. Takeda, S. Akira. 1999. TLR6: a novel member of an expanding Toll-like receptor family. Gene 231: 59
Poltorak, A., X. He, I. Smirnova, M.-Y. Liu, C. V. Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085
Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, S. Akira. 1999. TLR4-deficient mice are hyporesponsive to LPS: evidence for TLR4 as the Lps gene product. J. Immunol. 162: 3749
Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, T. Ogawa, H. Takada, K. Takeda, S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274:17406.
Yoshimura, A., E. Lien, R. R. Ingalls, E. Tuomanen, R. Dziarski, D. Golenbock. 1999. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163: 1
Brightbill, D. H., H. D. Libraty, R. S. Krutzik, B. R. Yang, T. J. Belisle, R. J. Bleharski, M. Maitland, V. M. Norgard, E. S. Plevy, T. S. Smale, et al 1999. Host defense mechanisms triggered by microbial lipoproteins through Toll-Like receptors. Science 285: 732
Aliprantis, O. A., R. B. Yang, R. M. Mark, S. Suggett, B. Devaux, D. J. Radolf, R. G. Klimpel, P. Godowski, A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285: 736
Lien, E., T. J. Sellati, A. Yoshimura, T. H. Flo, G. Rawadi, R. W. Finberg, J. D. Carroll, T. Espevik, R. R. Ingalls, J. D. Radolf, D. T. Golenbock. 1999. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274: 33419
Underhill, D. M., A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811
Takeuchi, O., A. Kaufmann, K. Grote, T. Kawai, K. Hoshino, M. Morr, P. F. Muhlradt, S. Akira. 2000. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164: 554
Muzio, M., G. Natoli, S. Saccani, M. Levrero, A. Mantovani. 1998. The human Toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187: 2097
Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, C. A. Janeway, Jr. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2: 253
Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, S. Akira. 1998. Targeted disruption of the MyD 88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143
Kawai, T., O. Adachi, T. Ogawa, K. Takeda, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115
Takeuchi, O., K. Takeda, K. Hoshino, O. Adachi, T. Ogawa, S. Akira. 2000. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int, Immunol. 12: 113
O’Brien, A. D., D. L. Rosenstreich, I. Scher, G. H. Campbell, R. P. MacDermott, S. B. Formal. 1980. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124: 20
Nakane, A., M. Okamoto, M. Asano, M. Kohanawa, T. Minagawa. 1995. Endogenous gamma interferon, tumor necrosis factor, and interleukin-6 in Staphylococcus aureus infection in mice. Infect. Immun. 63: 1165