Optimal tests for parameter breaking process in conditional quantile models

The Japanese Economic Review - Tập 71 - Trang 479-510 - 2020
Dong Jin Lee1
1Department of Economics and Finance, Sangmyung University, Seoul, South Korea

Tóm tắt

This paper proposes efficient tests for quantile parameter instability in parametric and semiparametric setups. In each setup, various types of unstable parameter processes are examined such as single structural break, multiple structural breaks, and random parameters, and the optimal test is suggested for each unstable process. In a parametric model, tick-exponential family of distributions is used to construct the likelihood ratio tests. The suggested tests have the best asymptotic weighted average power if the likelihood function is correctly specified and are asymptotically correct-sized even under misspecification. In a semiparametric setup in which the underlying distribution is unknown but is treated as an infinite-dimensional nuisance parameter, we show that semiparametric efficient tests are adaptive if the error term is conditionally iid. Non-adaptive efficient tests are suggested under weaker conditions as well. Monte Carlo simulation shows that the proposed tests have better finite sample powers than the existing tests under various circumstances.

Tài liệu tham khảo

Andrews, D. (1992). Generic uniform convergence. Econometric Theory,8, 241–257. Andrews, D. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica,61, 821–856. Andrews, D. (1995). Nonparametric kernel estimation for semiparametric economtric models. Econometric Theory,11, 560–596. Andrews, D., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica,62, 1383–1414. Andrews, D., & Ploberger, W. (1995). Admissibility of the likelihood ratio test when a nuisance parameter is present only under the alternative. The Annals of Statistics,23, 1609–1629. Bickel, P. (1982). The 1980 wald memorial lectures: on adaptive estimation. Annals of Statistics,10, 647–671. Chamberlain, G. (2007). Decision theory applied to an instrumental variables model. Econometrica,75, 609–652. Chen, C. W. S., So, M. K. P., & Chiang, T. C. (2015). Evidence of stock returns and abnormal trading volume: A threshold quantile regression approach. The Japanese Economic Review,127, 96–124. Chernozhukov, V., & Hansen, C. (2008). Instrumental variable quantile regression: A robust inference approach. Journal of Econometrics,142, 379–398. Chernozhukov, V., Hansen, C., & Jansson, M. (2009). Admissible invariant similar tests for instrumental variable regression. Econometric Theory,25, 806–818. Chernozhukov, V., & Umantsev, L. (2001). Conditional value-at-risk: Aspects of modeling and estimation. Empirical Economics,26, 271–292. Davidson, J. (1994). Stochastic limit theory: advanced texts in econometrics. Oxford, London. Elliott, G., & Mȕller, U. (2006). Efficients tests for general persistent time variation in regression coefficients. Review of Economic Studies,73, 907–940. Engle, R. F., & Manganelli, S. (2004). Caviar: Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics,22, 367–381. Koenker, R., & Zhao, Q. (1996). Conditional quantile estimation and inference for arch models. Econometric Theory,12, 793–813. Komunjer, I. (2005). Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics,128, 137–164. Komunjer, I., & Vuong, Q. (2010a). Efficient estimation in dynamic conditional quantile models. Journal of Econometrics,157, 272–285. Komunjer, I., & Vuong, Q. (2010b). Semiparametric efficiency bound in time-series modesl for conditional quantiles. Econometric Theory,26, 383–405. Koul, H. L., & Schick, A. (1997). Efficient estimation in nonlinear autoregressive time-series models. Bernouilli,3, 247–277. Lee, D. J. (2016). Parametric and semiparametric efficient tests for parameter instability. Journal of Time Series Analysis,37, 451–475. Lee, D.J., Kim, T.H., and Mizen, P. (2018) Impulse response analysis in conditional quantile and an application to monetary policy. Unpublished manuscript. Lee, D. J., & Yoon, J. H. (2016). The new Keynesian Phillips curve and the asymmetry of monetary policy. Economic Modelling,55, 102–114. Lehmann, E. L., & Romano, J. P. (2005). Testing Statistical Hypothesis (3rd ed.). Berlin: Springer. Mȕller, U., & Petalas, P. (2010). Efficient estimation of the parameter path in unstable time series models. Review of Economic Studies,77, 1508–1539. Newey, W., & McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of Econometrics,4, 2113–2245. Newey, W., & Powell, J. (1990). Efficient estimation of linear and type i censored regression models under conditional quantile restrictions. Econometric Theory,6, 295–317. Nyblom, J. (1989). Testing for the constancy of parameters over time. Journal of the American Statistical Association,84, 348–368. Qu, Z. (2008). Testing for structural change in regression quantiles. Journal of Econometrics,146, 170–184. Schick, A. (1987). A note on the construction of asymptotically linear estimators. Journal of Statistial Planning and Inference,16, 89–105. Stein, C. (1956). Efficient nonparametric estimation and testing. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability,1, 187–195. van der Vaart, A. (1998). Asymptotic statistics. New York: Cambridge University Press. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society,54, 426–482. White, H. (2001). Asymptotic theory for econometrics. San Diego: Academic Press. White, H., Kim, T.-H., & Manganelli, S. (2015). Measuring codependence between financial markets using multivariate multi-quantile CAViaR. Journal of Econometrics,150, 248–260.