Pollen monitoring: minimum requirements and reproducibility of analysis

Aerobiologia - Tập 30 - Trang 385-395 - 2014
C. Galán1, M. Smith2, M. Thibaudon3, G. Frenguelli4, J. Oteros1, R. Gehrig5, U. Berger2, B. Clot5, R. Brandao6
1Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agreefood (ceiA3), University of Córdoba, Córdoba, Spain
2Research Group Aerobiology and Pollen Information, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Vienna, Austria
3Reseau National de Surveillance Aerobiologique (RNSA), Brussieu, France
4Department of Plant Biology, University of Perugia, Perugia, Italy
5Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland
6ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal

Tóm tắt

Training, quality assurance (QA) and quality control (QC) play an important role in building competence in monitoring and research in aerobiology. The main goals of this paper were to: (a) formulate an updated Minimum Requirements Report for pollen monitoring; (b) carry out a pilot QC exercise of staff involved in pollen counting from various national networks in order to examine between analysts reproducibility and develop a methodology that can be used in future QC exercises. A questionnaire survey was sent to coordinators of participating pollen monitoring networks. In addition, a total of 45 technicians from 15 European countries participated in the pilot QC exercise. All technicians were instructed to analyse two slides containing the following pollen types: (a) Poaceae and Betula pollen grains in the north of Europe; (b) Poaceae and Olea pollen grains in the south of Europe. Minimum Recommendations were produced based on the results of the questionnaire survey, published literature, and the outcomes of a workshop. In the QC exercise, it was noticed that technicians who followed the Minimum Recommendations and examined at least 10 % of the slide tended to have better indicators of precision and accuracy than those technicians who did not follow the Minimum Recommendations. The proposed Minimum Recommendations will help to improve the quality of scientific work, particularly for those who are considering the setting up of new monitoring sites. The results of the pilot QC exercise will help to develop a methodology that can be used again in the future, thereby ensuring data quality.

Tài liệu tham khảo

Abraira V. (2002a). Desviación estándar y error estándar. Notas estadísticas, 28, 621–623. Abraira V. (2002b). Estimación: intervalos de confianza. Notas estadísticas, 28, 84–85. Albertini, R., Brighetti, M. A., Galán C., Torrigiani- Malaspina, T., Manfredi, M., Marcer M., et al. (2009). Manuale di Gestione e Qualità della Rete Italiana di Monitoraggio in Aerobiologia. R.I.M.A. ® Associazione Italiana di Aerobiologia®, a cura di Travaglini A., Albertini R., Zieger E. L.E.G.O., OZZANO EMILIA (BO). Alcázar, P., Galán, C., Cariñanos, P., & Domínguez-Vilches, E. (1999). Diurnal variation of airborne pollen at two different heights. Journal of Investigational Allergology and Clinical Immunology, 9, 89–95. BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. The British Aerobiology Federation: Aylesford. ISBN 0-9525617-0-0. Berti, G., Isocrono, D., Ropolo, L., Caranci, N., Cesare, M. R., Fossa, V., et al. (2009). An experience of data quality evaluation in pollen monitoring activities. Journal of Environmental Monitoring, 11, 788–792. Cariñanos, P., Emberlin, J., Galan, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia, 16, 339–346. Carvalho, E., Sindt, C., Verdier, A., Galan, C., O’Donoghue, L., Parks, S., et al. (2008). Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia, 24, 191–201. Comtois, P., Alcazar, P., & Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28. Comtois, P., & Mandrioli, P. (1997). Pollen capture media: A comparative study. Aerobiologia, 13, 149–154. EAS QC Working Group. (2011). Minimum requirements to manage aerobiological monitoring stations included in a national network involved in the EAN. IAA Newsletter, 72, 1. Galán, C. (2009). Summary of minutes: Quality control workshop minutes August 14th, 2008. In 4th ESA 2008 European symposium on aerobiology. Turku (Finland). IAA Newsletter (Vol. 67, p. 7). Galán, C. (2010). EAS QC Group. IAA Newsletter, 69, 7. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Spanish aerobiology network (REA): Management and quality manual. Córdoba: Servicio de publicaciones de la Universidad de Córdoba. Galán, C., & Domínguez-Vilches, E. (1997). The capture media in aerobiological sampling. Aerobiologia, 13, 155–160. Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative-analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198. Gottardini, E., Cristofolini, F., Cristofori, A., Vannini, A., & Ferretti, M. (2009). Sampling bias and sampling errors in pollen counting in aerobiological monitoring in Italy. Journal of Environmental Monitoring, 11, 751–755. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265. ISO 5725. (1994). Accuracy (trueness and precision) of measurement methods and results. Jäger, S., Mandroli, P., Spieksma, F., Emberlin, J., Hjelmroos, M., Rantio-Lehtimaki, A., et al. (1995). News. Aerobiologia, 11, 69–70. Jato, V., Rodriguez-Rajo, F. J., Alcazar, P., de Nuntiis, P., Galan, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia, 22, 13–25. Käpylä, M. (1989). Adhesives and mounting media in aerobiological sampling. Grana, 28, 215–218. Käpylä, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141. Leuschner, R. M. (1999). Comparison between pollen counts at ground and at roof level in Basel (Switzerland). Aerobiologia, 15, 143–147. Mäkinen, Y. (1981). Random sampling in the study of atmospheric slides. Rep Aerobiology Laboratory Turku University, 5, 27–43. Mandrioli, P. (1994). Metodica di campionamento dei granuli pollinici e delle spore fungine aerodisperse. In Monitoraggio aerobiologico in Emilia-Romagna. Collana “Contributi”, Regione Emilia-Romagna. Mandrioli, P., Comtois, P., Domínguez-Vilches, E., Galán-Soldevilla, C., Syzdek, L. D., & Isard, S. A. (1998). Sampling: Principles and techniques. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology (p. 261). Bologna: Pitagora Editrice. Mandrioli, P., & Puppi, G. (1978). Method for sampling airborne pollen grains and fungal spores. In Aerobiological Monitoring in the Emilia-Romagna Region. Series “Studies and Documentation” (Vol. 13, p. 79). Regione Emilia-Romagna press (in Italian). Ogden, E. C., Raynor, G. S., Hayes, J. V., Lewis, D. M., & Haines, J. H. (1976). Manual for sampling airborne pollen. New York: Hafner Press. Oteros, J., Galán, C., Alcázar, P., & Domínguez-Vilches, E. (2013). Quality control in bio-monitoring networks, Spanish Aerobiology Network. Science of the Total Environment, 443, 559–565. PAACB (Pan American Aerobiology Certification Board) (2003). Certification program for spore analysts. http://www.paaa.org/paacb.html. Pedersen, B., & Moseholm, L. (1993). Precision of the daily pollen count. Identifying sources of variation using variance component models. Aerobiologia, 9, 15–26. Rantio-Lehtimäki, A., Koivikko, A., Kupias, R., Mäkinen, Y., & Pohjola, A. (1991). Significance of sampling height of airborne particles for aerobiological information. Allergy, 46, 68–76. Scheifinger, H., Belmonte, J., Celenk, S., Damialis, A., Dechamp, C., Garcia-Mozo, H., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In M. Sofiev & K. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impact. The Netherlands: Springer. Sikoparija, B., Pejak-Sikoparija, T., Radisic, P., Smith, M., & Galán, C. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390. Siljamo, P., Sofiev, M., Filatova, E., Grewling, Ł., Jäger, S., Khoreva, E., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International Journal of Biometeorology, 57(1), 125–136. Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57(1), 45–58. Spetz, G. (1995). Improving precision of rubber test methods: Part 3—Tensile test. Polymer Testing, 14, 13–34. Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on the street-level versus roof-top-level ratio’s airborne pollen quantities. Aerobiologia, 16, 21–24. Starink, R. J., & Visser, R. G. (2010). Interlaboratory studies: Protocol for the organisation, statistics and evaluation. Institute for Interlaboratory Studies (I.I.S.). The Netherlands. Tormo, R., Munoz, A., & Silva, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore trap. Aerobiologia, 12, 161–166. Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Cordoba (south-western Spain). Aerobiologia, 29(1), 113–120. Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.