Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics

Chem - Tập 4 - Trang 1284-1313 - 2018
Bowen Yang1,2, Yu Chen1, Jianlin Shi1
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
2University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Tài liệu tham khảo

Thakor, 2013, Nanooncology: the future of cancer diagnosis and therapy, CA Cancer J. Clin., 63, 395, 10.3322/caac.21199 Wang, 2008, Application of nanotechnology in cancer therapy and imaging, CA Cancer J. Clin., 58, 97, 10.3322/CA.2007.0003 Shi, 2017, Cancer nanomedicine: progress, challenges and opportunities, Nat. Rev. Cancer, 17, 20, 10.1038/nrc.2016.108 Chen, 2017, Rethinking cancer nanotheranostics, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.24 Chen, 2015, Two-dimensional graphene analogues for biomedical applications, Chem. Soc. Rev., 44, 2681, 10.1039/C4CS00300D Tan, 2017, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117, 6225, 10.1021/acs.chemrev.6b00558 Gupta, 2015, Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73, 44, 10.1016/j.pmatsci.2015.02.002 Kong, 2017, Elemental two-dimensional nanosheets beyond graphene, Chem. Soc. Rev., 46, 2127, 10.1039/C6CS00937A Mannix, 2017, Synthesis and chemistry of elemental 2D materials, Nat. Rev. Chem., 1, 10.1038/s41570-016-0014 Miro, 2014, An atlas of two-dimensional materials, Chem. Soc. Rev., 43, 6537, 10.1039/C4CS00102H Lai, 2016, Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures, Chem, 1, 59, 10.1016/j.chempr.2016.06.011 Yang, 2013, Nano-graphene in biomedicine: theranostic applications, Chem. Soc. Rev., 42, 530, 10.1039/C2CS35342C Peng, 2014, Two dimensional nanomaterials for flexible supercapacitors, Chem. Soc. Rev., 43, 3303, 10.1039/c3cs60407a Rao, 2013, Graphene analogues of inorganic layered materials, Angew. Chem. Int. Ed., 52, 13162, 10.1002/anie.201301548 Sun, 2015, Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry, Acc. Chem. Res., 48, 3, 10.1021/ar500164g Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Zhi, 2009, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater., 21, 2889, 10.1002/adma.200900323 Kim, 2012, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett., 12, 161, 10.1021/nl203249a Li, 2017, Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets, Small, 13 Manzeli, 2017, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.33 Kalantar-zadeh, 2015, Two-dimensional transition metal dichalcogenides in biosystems, Adv. Funct. Mater., 25, 5086, 10.1002/adfm.201500891 Li, 2014, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets, Acc. Chem. Res., 47, 1067, 10.1021/ar4002312 Huang, 2013, Metal dichalcogenide nanosheets: preparation, properties and applications, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c van der Zande, 2013, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater., 12, 554, 10.1038/nmat3633 Wang, 2009, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76, 10.1038/nmat2317 Zhang, 2013, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc., 135, 18, 10.1021/ja308249k Wang, 2014, Titanium oxide nanosheets: graphene analogues with versatile functionalities, Chem. Rev., 114, 9455, 10.1021/cr400627u Park, 2011, Large-scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents, Chem. Mater., 23, 3318, 10.1021/cm200414c Deng, 2011, Intracellular glutathione detection using MnO2 nanosheet-modified upconversion nanoparticles, J. Am. Chem. Soc., 133, 20168, 10.1021/ja2100774 Wang, 2012, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chem. Rev., 112, 4124, 10.1021/cr200434v Zhao, 2012, Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications, Adv. Funct. Mater., 22, 675, 10.1002/adfm.201102222 Gu, 2008, In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids, Chem. Mater., 20, 3715, 10.1021/cm703602t Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488 Naguib, 2014, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138 Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970 Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35 Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem. Int. Ed., 54, 11526, 10.1002/anie.201506154 Yasaei, 2015, High-quality black phosphorus atomic layers by liquid-phase exfoliation, Adv. Mater., 27, 1887, 10.1002/adma.201405150 Liu, 2015, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A Castellanos-Gomez, 2014, Isolation and characterization of few-layer black phosphorus, 2D Mater., 1, 10.1088/2053-1583/1/2/025001 Xu, 2013, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766, 10.1021/cr300263a Qian, 2017, Two-dimensional black phosphorus nanosheets for theranostic nanomedicine, Mater. Horiz., 4, 800, 10.1039/C7MH00305F Chen, 2013, In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles, Adv. Mater., 25, 3144, 10.1002/adma.201205292 Li, 2011, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J. Mater. Chem., 21, 11862, 10.1039/c1jm11192b Li, 2013, Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2, Small, 9, 1974, 10.1002/smll.201202919 Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA, 102, 10451, 10.1073/pnas.0502848102 Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975 Nicolosi, 2013, Liquid exfoliation of layered materials, Science, 340, 10.1126/science.1226419 Niu, 2016, Production of two-dimensional nanomaterials via liquid-based direct exfoliation, Small, 12, 272, 10.1002/smll.201502207 Zeng, 2011, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication, Angew. Chem. Int. Ed., 50, 11093, 10.1002/anie.201106004 Zeng, 2012, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angew. Chem. Int. Ed., 51, 9052, 10.1002/anie.201204208 Tan, 2017, Preparation of ultrathin two-dimensional TixTa1−xSyOz nanosheets as highly efficient photothermal agents, Angew. Chem. Int. Ed., 56, 7842, 10.1002/anie.201703597 Naguib, 2012, Two-dimensional transition metal carbides, ACS Nano, 6, 1322, 10.1021/nn204153h Lin, 2017, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion, Nano Lett., 17, 384, 10.1021/acs.nanolett.6b04339 Naguib, 2013, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc., 135, 15966, 10.1021/ja405735d Wang, 2015, Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation, J. Am. Chem. Soc., 137, 11376, 10.1021/jacs.5b06025 Dines, 1975, Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides, Mater. Res. Bull., 10, 287, 10.1016/0025-5408(75)90115-4 Chou, 2013, Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed., 52, 4160, 10.1002/anie.201209229 Liu, 2015, Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radio labeling and multimodal imaging guided photothermal therapy, ACS Nano, 9, 950, 10.1021/nn506757x Liu, 2014, Drug delivery with PEGylated MoS2 nanosheets for combined photothermal and chemotherapy of cancer, Adv. Mater., 26, 3433, 10.1002/adma.201305256 Liu, 2014, Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets, Nanoscale, 6, 11219, 10.1039/C4NR03753G Lin, 2017, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows, J. Am. Chem. Soc., 139, 16235, 10.1021/jacs.7b07818 Lin, 2017, Theranostic 2D tantalum carbide (MXene), Adv. Mater., 30 Wang, 2013, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc., 135, 5304, 10.1021/ja4013485 Liu, 2012, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett., 12, 1538, 10.1021/nl2043612 Lu, 2014, Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates, Nano Lett., 14, 2419, 10.1021/nl5000906 Zhan, 2012, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate, Small, 8, 966, 10.1002/smll.201102654 Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798 Sun, 2014, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets, Nat. Commun., 5, 3813, 10.1038/ncomms4813 Lei, 2014, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting, J. Am. Chem. Soc., 136, 6826, 10.1021/ja501866r Sun, 2013, Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide, Angew. Chem. Int. Ed., 52, 10569, 10.1002/anie.201305530 Wang, 2015, Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor, Biomaterials, 39, 206, 10.1016/j.biomaterials.2014.11.009 Wang, 2015, A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy, Adv. Mater., 27, 2775, 10.1002/adma.201500870 Tan, 2015, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials, Nat. Commun., 6, 7873, 10.1038/ncomms8873 Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589 Chen, 2014, Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer, Adv. Mater., 26, 7019, 10.1002/adma.201402572 Yong, 2014, WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells, Nanoscale, 6, 10394, 10.1039/C4NR02453B Yuwen, 2016, Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells, Nanoscale, 8, 2720, 10.1039/C5NR08166A Qian, 2015, Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy, Nanoscale, 7, 6380, 10.1039/C5NR00893J Ju, 2016, Copper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy, Angew. Chem. Int. Ed., 55, 11467, 10.1002/anie.201605509 Feng, 2016, NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy, J. Mater. Chem. B, 4, 8000, 10.1039/C6TB02232D Lin, 2014, Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy, J. Mater. Chem. B, 2, 1031, 10.1039/c3tb21479f Wang, 2016, Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis, Adv. Mater., 28, 6940, 10.1002/adma.201601413 Shao, 2016, Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy, Nat. Commun., 7, 12967, 10.1038/ncomms12967 Pan, 2012, Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles, J. Am. Chem. Soc., 134, 5722, 10.1021/ja211035w Zhao, 2014, Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe, J. Am. Chem. Soc., 136, 11220, 10.1021/ja5029364 Tao, 2017, Black phosphorus nanosheets as a robust delivery platform for cancer theranostics, Adv. Mater., 29 Dai, 2017, Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication, ACS Nano, 11, 9467, 10.1021/acsnano.7b05215 Qian, 2016, Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation, Adv. Mater., 28, 8097, 10.1002/adma.201602012 Tang, 2017, Materials chemistry of nanoultrasonic biomedicine, Adv. Mater., 29, 10.1002/adma.201604105 Cheng, 2014, Functional nanomaterials for phototherapies of cancer, Chem. Rev., 114, 10869, 10.1021/cr400532z Park, 2017, Towards clinically translatable in vivo nanodiagnostics, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.14 Fan, 2016, Overcoming the Achilles' heel of photodynamic therapy, Chem. Soc. Rev., 45, 6488, 10.1039/C6CS00616G Agostinis, 2011, Photodynamic therapy of cancer: an update, CA Cancer J. Clin., 61, 250, 10.3322/caac.20114 Chen, 2017, Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer, Adv. Mater., 29 Kurapati, 2016, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead, Adv. Mater., 28, 6052, 10.1002/adma.201506306 Cheng, 2014, PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy, Adv. Mater., 26, 1886, 10.1002/adma.201304497 Yin, 2014, High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano, 8, 6922, 10.1021/nn501647j Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w Wang, 2014, Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling, ACS Appl. Mater. Interfaces, 6, 19888, 10.1021/am505305g Lu, 2016, Bioresponsive materials, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.75 Fan, 2015, Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy, Adv. Mater., 27, 4155, 10.1002/adma.201405141 Zhu, 2016, Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy, Adv. Funct. Mater., 26, 5490, 10.1002/adfm.201600676 Yu, 2016, “Manganese extraction” strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles, J. Am. Chem. Soc., 138, 9881, 10.1021/jacs.6b04299 Kurapati, 2017, Enzymatic biodegradability of pristine and functionalized transition metal dichalcogenide MoS2 nanosheets, Adv. Funct. Mater., 27, 10.1002/adfm.201605176 Walia, 2016, Defining the role of humidity in the ambient degradation of few-layer black phosphorus, 2D Mater., 4, 10.1088/2053-1583/4/1/015025 Zhao, 2016, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed., 55, 5003, 10.1002/anie.201512038 Zhou, 2016, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection, Angew. Chem. Int. Ed., 55, 11437, 10.1002/anie.201605168 Yang, 2011, In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice, ACS Nano, 5, 516, 10.1021/nn1024303 Hao, 2017, In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS2 (M = Mo, W, Ti) nanosheets, Adv. Sci. (Weinh.), 4, 1600160 Kurapati, 2016, White graphene undergoes peroxidase degradation, Angew. Chem. Int. Ed., 55, 5506, 10.1002/anie.201601238 Qu, 2017, Improved biocompatibility of black phosphorus nanosheets by chemical modification, Angew. Chem. Int. Ed., 56, 14488, 10.1002/anie.201706228 Yang, 2017, Nanomedicine-augmented cancer-localized treatment by 3D theranostic implants, J. Biomed. Nanotechnol., 13, 871, 10.1166/jbn.2017.2401 Wang, 2015, Injectable 2D MoS2-integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia, Adv. Mater., 27, 7117, 10.1002/adma.201503869 Ma, 2016, A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration, Adv. Funct. Mater., 26, 1197, 10.1002/adfm.201504142 Han, 2017, CpG loaded MoS2 nanosheets as multifunctional agents for photothermal enhanced cancer immunotherapy, Nanoscale, 9, 5927, 10.1039/C7NR01460K Chen, 2016, Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks, Adv. Mater., 28, 3235, 10.1002/adma.201505147 Wang, 2017, Coordination-accelerated “Iron Extraction” enables fast biodegradation of mesoporous silica-based hollow nanoparticles, Adv. Healthc. Mater., 6, 10.1002/adhm.201700720