Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source

Chemosphere - Tập 69 Số 11 - Trang 1815-1820 - 2007
Márcia Monteiro Machado Gonçalves1,2, Antônio Carlos Augusto da Costa2, Selma Gomes Ferreira Leite3, Geraldo L. Sant’Anna1
1COPPE – Programa de Engenharia Química/Universidade Federal do Rio de Janeiro, Centro de Tecnologia – bloco G, Ilha do Fundão, 21941-972 Rio de Janeiro, Brazil
2Departamento de Tecnologia de Processos Bioquímicos, Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, 20550-900 Rio de Janeiro, Brazil
3Escola de Química/Universidade Federal do Rio de Janeiro, Centro de Tecnologia – bloco E, Ilha do Fundão, 21941-972 Rio de Janeiro, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

APHA, American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, USA.

Beveridge, 1976, Major sites of metal binding in Bacillus licheniformis walls, J. Bacteriol., 127, 1504

Callander, 1983, Anaerobic digestion of high sulphate cane juice stillage in a tower fermenter, Biotechnol. Lett., 5, 755, 10.1007/BF01386497

Elliott, 1998, Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage, Water Res., 32, 3724, 10.1016/S0043-1354(98)00144-4

Fortin, D., Beveridge, T.J., 1995. Presence of sulfate-reducing bacteria in two sulfidic mine tailings and their potential role in the formation of diagenetic iron sulfide minerals. In: Biotechnology and the Mining Environment-Proceedings of 11th Annual General Meeting of Biominet, Ottawa, Canada, pp. 87–101.

Gonçalves, 2005, The bioactivation procedure for increasing the sulfate-reducing bacteria in a UASB reactor, Braz. J. Chem. Eng., 22, 565, 10.1590/S0104-66322005000400009

Hansen, 1994, Metabolism of sulfate-reducing prokaryotes, Anton. Leeuw. Int. J.G., 66, 165, 10.1007/BF00871638

ICDD PDF-2 Database, 1998. International Centre for Diffraction Data. 12 Campus Boulevard Newton Square, Pennsylvania 19073-3273 USA.

Jalali, 2000, The role of sulfate reducing bacteria in copper removal from aqueous sulfate solutions, Water Res., 34, 797, 10.1016/S0043-1354(99)00194-3

Janssen, 2001, Industrial applications of new sulfur biotechnology, Water Sci. Technol., 44, 85, 10.2166/wst.2001.0471

Lima, 2001, Anaerobic sulfate-reducing microbial process using UASB reactor for heavy metals decontamination, Environ. Technol., 22, 261, 10.1080/09593332208618286

Lettinga, 1997, Advanced anaerobic wastewater treatment in the near future, Water Sci. Technol., 35, 5, 10.1016/S0273-1223(97)00222-9

Nagpal, 2000, Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study, Biotechnol. Bioeng., 70, 533, 10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C

Postgate, 1984, The Sulfate-Reducing Bacteria

Prada, 1998, Metodologia analítica para a determinação de sulfato em vinhoto, Quim. Nova, 21, 249, 10.1590/S0100-40421998000300002

Scheeren, 1992, New biological treatment plant for heavy metal-contaminates groundwater, Trans. Inst. Min. Metall., 101, c190

Van Langerak, 2000, Impact of location of CaCO3 precipitation on development of intact anaerobic sludge, Water Res., 34, 437, 10.1016/S0043-1354(99)00154-2

Zagury, 2006, Characterization and reactivity assessment of organic substrates for sulfate-reducing bacteria in acid mine drainage treatment, Chemosphere, 64, 944, 10.1016/j.chemosphere.2006.01.001