Sensitivity studies of high-resolution RegCM3 simulations of precipitation over the European Alps: the effect of lateral boundary conditions and domain size

Springer Science and Business Media LLC - Tập 126 - Trang 617-630 - 2015
Imran Nadeem1, Herbert Formayer1
1Institute of Meteorology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria

Tóm tắt

A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.

Tài liệu tham khảo

Auer I, Boehm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schoener W, Ungersboeck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Mueller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46. doi:10.1002/joe.1377 Awan N, Gobiet A, Suklitsch M (2014) The role of regional climate model setup in simulating two extreme precipitation events in the European Alpine region. Clim Dyn:1–16. doi:10.1007/s00382-014-2323-1 Awan NK, Truhetz H, Gobiet A (2011) Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the Alpine Region: an ensemble-based analysis. J Clim 24(12):3107–3123. doi:10.1175/2011JCLI3674.1 Bao X, Zhang F (2013) Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against independent sounding observations over the Tibetan Plateau. J Clim 26(1):206–214. doi:10.1175/JCLI-D-12-00056.1 Beck A, Ahrens B, Stadlbacher K (2004) Impact of nesting strategies in dynamical downscaling of reanalysis data. Geophys Res Lett 31(19). doi:10.1029/2004GL020115 Bergant K, Belda M, Halenka T (2007) Systematic errors in the simulation of European climate (1961–2000) with RegCM3 driven by NCEP/NCAR reanalysis. Int J Climatol 27(4):455–472. doi:10.1002/joc.1413 Betts AK, Koehler M, Zhang Y (2009) Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J Geophys Res Atmos:114. doi:10.1029/2008JD010761 Bhaskaran B, Ramachandran A, Jones R, Moufouma-Okia W (2012) Regional climate model applications on sub-regional scales over the Indian monsoon region: the role of domain size on downscaling uncertainty. J Geophys Res Atmos:117. doi:10.1029/2012JD017956 Bray M, Han D, Xuan Y, Bates P, Williams M (2011) Rainfall uncertainty for extreme events in NWP downscaling model. Hydrol Process 25(9):1397–1406. doi:10.1002/hyp.7905 Chatré B, Lanzinger G, Macaluso M, Mayrhofer W, Morandini M, Onida M, Polajnar B (2010) The Alps: People and Pressures in the Mountains, the Facts at a Glance. Permanent Secretariat of the Alpine Convention, Innsbruck, www.alpconv.org/en/publications/alpine/Documents/Vademecum_web.pdf Davies H, Turner R (1977) Updating prediction models by dynamical relaxation—examination of technique. Q J R Meteorol Soc 103(436):225–245. doi:10.1002/qj.49710343602 Davies T (2014) Lateral boundary conditions for limited area models. Q J R Meteorol Soc 140(678, A):185–196. doi:10.1002/qj.2127 Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828 Denis B, Laprise R, Caya D (2003) Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Clim Dyn:20107–126. doi:10.1007/s00382-002-0264-6 Dickinson R, Henderson-Sellers A, Kennedy P (1993) Biosphereatmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN–387+STR, Natl. Cent. for Atmos. Res., Boulder Frank A, Formayer H, Seibert P, Krüger B, Kromp-Kolb H (2005) Reclip:more, Research for Climate Protection: Model Run Evaluation. Project Report (in German), Institute of Meteorology, University of Natural Resources and Life Sciences, 1180, Vienna, Austria, https://imp.boku.ac.at/klima/Literatur/Teilbericht_Reclip.pdf Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18(8):873–900. doi:10.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9 Frei C, Christensen J, Deque M, Jacob D, Jones R, Vidale P (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmos 108(D3). doi:10.1029/2002JD002287 Fritsch J, Chappel C (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37(8):1722–1733. doi:10.1175/1520-0469(1980)037%3C1722:NPOCDM%3E2.0.CO;2 Giorgi F, Marinucci M, Bates G, Decanio G (1993) Development of a Second-Generation Regional Climate Model (RegCM2). Part II: Convective Processes and Assimilation of Lateral Boundary Conditions. Mon Weather Rev 121(10):2814–2832. doi:10.1175/1520-0493(1993)121%3C2814:DOASGR%3E2.0.CO;2 Giorgi F, Francisco R, Pal J (2003) Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: effects of temperature and water vapor disaggregation. J Hydrometeorol 4(2):317–333. doi:10.1175/1525-7541(2003)4%3C317:EOASTA%3E2.0.CO;2 Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guettler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52(1, 29):7–29. doi:10.3354/cr01018 Goswami P, Himesh S, Goud B (2013) Simulation of high-impact tropical weather events: comparative analysis of three heavy rainfall events. Nat Hazards 65(3):1703–1722. doi:10.1007/s11069-012-0440-x Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121(3):764–787. doi:10.1175/1520-0493(1993)121%3C0764:PEOAUB%3E2.0.CO;2 Halenka T (2010) Cecilia EC FP6 Project on the Assessment of Climate Change Impacts in Central and Eastern Europe. In: Alexandrov V, Gajdusek MF, Knight CGF, Yotova A (eds) Global Environmental Change: Challenges to Science and Society in Southeastern Europe. Springer, Netherlands, pp 125–137 Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113(D20). doi:10.1029/2008JD010201 Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dyn 35(5):841–858. doi:10.1007/s00382-009-0698-1 Holtslag A, Debruijn E, Pan H (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575. doi:10.1175/1520-0493(1990)118%3C1561:AHRAMT%3E2.0.CO;2 Im ES, Coppola E, Giorgi F, Bi X (2010) Validation of a high-resolution regional climate model for the Alpine Region and effects of a subgrid-scale topography and land use representation. J Clim 23(7):1854–1873. doi:10.1175/2009JCLI3262.1 Isotta FA, Frei C, Weilguni V, Tadic MP, Lassegues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertacnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34(5):1657–1675. doi:10.1002/joc.3794 Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Chang 81(1):31–52. doi:10.1007/s10584-006-9213-4 Jones P (1999) First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon Weather Rev 127(9):2204–2210. doi:10.1175/1520-0493(1999)127%3C2204:FASOCR%3E2.0.CO;2 Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121(526):1413–1449. doi:10.1002/qj.49712152610 Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo J, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643. doi:10.1175/BAMS-83-11-1631 Kiehl J, Hack J, Bonan G, Boville B, Briegleb B, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN–420+STR, Natl. Cent. for Atmos. Res., Boulder Kopparla P, Fischer EM, Hannay C, Knutti R (2013) Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys Res Lett 40(21):5803–5808. doi:10.1002/2013GL057866 Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32(6):833–854. doi:10.1007/s00382-008-0400-z Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Climatol 31(4):545–557. doi:10.1002/joc.2098 Pal J, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105(D24):29,579–29,594. doi:10.1029/2000JD900415 Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world—the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395+. doi:10.1175/BAMS-88-9-1395 Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35(4):685–711. doi:10.1007/s00382-009-0607-7 Reynolds R, Rayner N, Smith T, Stokes D, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625. doi:10.1175/1520-0442(2002)015%3C1609:AIISAS%3E2.0.CO;2 Skalak P, Deque M, Belda M, Farda A, Halenka T, Csima G, Bartholy J, Caian M, Spiridonov V (2014) CECILIA regional climate simulations for the present climate: validation and inter-comparison. J Clim 60(1):1–12. doi:10.3354/cr01207 Suklitsch M, Gobiet A, Truhetz H, Awan N, Gttel H, Jacob D (2011) Error characteristics of high resolution regional climate models over the Alpine area. Clim Dyn:37377–390. doi:10.1007/s00382-010-0848-5 Taylor K (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. doi:10.1029/2000JD900719 Torma C, Bartholy J, Pongracz R, Barcza Z, Coppola E, Giorgi F (2008) Adaptation of the RegCM3 climate model for the Carpathian Basin. IDOJARAS 112(3-4):233–247. doi:10.1175/2010JHM1234.1 Torma C, Coppola E, Giorgi F, Bartholy J, Pongracz R (2011) Validation of a high-resolution version of the regional climate model RegCM3 over the Carpathian Basin. J Hydrometeorol 12(1):84–100. doi:10.5194/nhess-13-1457-2013 Turco M, Zollo AL, Ronchi C, De Luigi C, Mercogliano P (2013) Assessing gridded observations for daily precipitation extremes in the Alps with a focus on northwest Italy. Nat Hazards Earth Syst Sci 13(6):1457–1468. doi:10.1256/qj.04.176 Uppala SM, Kllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hlm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1175/1520-0477(1997)078%3C2599:ATOLBC%3E2.0.CO;2 Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteorol Soc 78(11):2599–2617. doi:10.1175/JCLI4239.1 Xue Y, Vasic R, Janjic Z, Mesinger F, Mitchell KE (2007) Assessment of dynamic downscaling of the continental US regional climate using the Eta/SSiB regional climate model. J Clim 20(16):4172–4193 Xue Y, Janjic Z, Dudhia J, Vasic R, De Sales F (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res:14768–85. doi:10.1016/j.atmosres.2014.05.001 Zeng X, Zhao M, Dickinson R (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644. doi:10.1175/1520-0442(1998)011%3C2628:IOBAAF%3E2.0.CO;2