A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells
Tóm tắt
研究从一株徐闻牡丹珊瑚来源的土曲霉C23-3的发酵液中所提取出来的新化合物(S)-3-(2,3-二羟基-3-甲基丁基)-4-羟基苯甲醛((S)-3-(2,3-dihydroxy-3-methylbutyl)-4-hydroxybenzaldehyde)(1)以及已知天然产物4-羟基-3-(3-甲基丁-2-烯-1-基)-苯甲醛(4-hydroxy-3-(3-methylbut-2-en-1-yl)-benzaldehyde)(2)的抗氧化和抗炎活性及其机制。 从一株徐闻牡丹珊瑚来源的土曲霉C23-3的发酵液中所提取出来了一种新化合物1及已知天然产物2, 目前这两种苯甲醛的炎症相关研究尚未有报道。此外, 这两种苯甲醛在未来的炎症相关疾病中有潜在的应用前景。 通过一维(1D), 二维核磁共振谱(2D NMR), 高分辨电喷雾质谱(HR-ESI-MS)和旋光性分析, 得到了一种新的化合物(S)-3-(2,3-二羟基-3-甲基丁基)-4-羟基苯甲醛。运用免疫印迹法, 酶联免疫吸附试验(ELISA), 免疫荧光法和分子对接等方法, 并通过研究一氧化氮(NO), 活性氧(ROS), 诱导型一氧化氮合酶(iNOS), 环氧合酶-2(COX-2), 白细胞介素-6(IL-6), 丝裂原活化蛋白激酶(MAPK)和核因子-κB(NF-κB)信号通路的表达来探讨其抗炎作用。 这两种苯甲醛具有显著的抗炎能力, 是iNOS, COX-2, c-Jun氨基末端激酶(JNK), 细胞外调节蛋白激酶(ERK)和p38的潜在抑制剂。
Tài liệu tham khảo
Afonina IS, Zhong ZY, Karin M, et al., 2017. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol, 18(8):861–869. https://doi.org/10.1038/ni.3772
Aktan F, 2004. iNOS-mediated nitric oxide production and its regulation. Life Sci, 75(6):639–653. https://doi.org/10.1016/j.lfs.2003.10.042
An CL, Kong FD, Ma QY, et al., 2019. Secondary metabolites from marine-derived fungus Aspergillus sp. SCS-KFD66. Chin Tradit Herb Drugs, 50(13):3001–3007 (in Chinese). https://doi.org/10.7501/j.issn.0253-2670.2019.13.002
Arbabi S, Maier RV, 2002. Mitogen-activated protein kinases. Crit Care Med, 30(1):S74–S79. https://doi.org/10.1097/00003246-200201001-00010
Block ML, Zecca L, Hong JS, 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 8(1):57–69. https://doi.org/10.1038/nrn2038
Chen LL, Deng HD, Cui HM, et al., 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208
Chen N, Yu SK, Liu B, et al., 2019. Advances in research on secondary metabolites and activities of marine fungi. Chin J Public Health Manag, 35(1):44–47 (in Chinese). https://doi.org/10.19568/j.cnki.23-1318.2019.01.012
Chertov O, Yang D, Howard OMZ, et al., 2000. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev, 177(1):68–78. https://doi.org/10.1034/j.1600-065X.2000.17702.x
Cheung RCF, Ng TB, Wong JH, et al., 2016. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol, 100(4):1645–1666. https://doi.org/10.1007/s00253-015-7244-3
Cho JY, Kim MS, 2012. Antibacterial benzaldehydes produced by seaweed-derived Streptomyces atrovirens PK288–21. Fish Sci, 78(5):1065–1073. https://doi.org/10.1007/s12562-012-0531-3
Cobourne-Duval MK, Taka E, Mendonca P, et al., 2016. The antioxidant effects of thymoquinone in activated BV-2 murine microglial cells. Neurochem Res, 41(12):3227–3238. https://doi.org/10.1007/s11064-016-2047-1
Czaja AJ, 2014. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol, 20(10):2515–2532. https://doi.org/10.3748/wjg.v20.i10.2515
Emam SH, Sonousi A, Osman EO, et al., 2021. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg Chem, 107: 104630. https://doi.org/10.1016/j.bioorg.2021.104630
Ferrero-Miliani L, Nielsen OH, Andersen PS, et al., 2007. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol, 147(2): 227–235. https://doi.org/10.1111/j.1365-2249.2006.03261.x
Hayden MS, Ghosh S, 2008. Shared principles in NF-κB signaling. Cell, 132(3):344–362. https://doi.org/10.1016/j.cell.2008.01.020
Kim EK, Choi EJ, 2010. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 1802(4):396–405. https://doi.org/10.1016/j.bbadis.2009.12.009
Kim KS, Cui X, Lee DS, et al., 2014. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages. Int J Mol Sci, 15(12):23749–23765. https://doi.org/10.3390/ijms151223749
Kröncke KD, Fehsel K, Kolb-Bachofen V, 1998. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol, 113(2):147–156. https://doi.org/10.1046/j.1365-2249.1998.00648.x
Laroux FS, Pavlick KP, Hines IN, et al., 2001. Role of nitric oxide in inflammation. Acta Physiol Scand, 173(1):113–118. https://doi.org/10.1046/j.1365-201X.2001.00891.x
Lawrence T, Willoughby DA, Gilroy DW, 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol, 2(10):787–795. https://doi.org/10.1038/nri915
Li L, Wang LY, Wu ZQ, et al., 2014. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep, 4:6234. https://doi.org/10.1038/srep06234
Li ST, Dai Q, Zhang SX, et al., 2018. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin, 39(8):1294–1304. https://doi.org/10.1038/aps.2017.143
Li Z, Chen-Roetling J, Regan RF, 2009. Increasing expression of H- or L-ferritin protects cortical astrocytes from hemin toxicity. Free Radic Res, 43(6):613–621. https://doi.org/10.1080/10715760902942808
Liu ZG, Wang YP, Wang YQ, et al., 2016. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol, 35:210–216. https://doi.org/10.1016/j.intimp.2016.04.003
Ma XX, Liu YY, Nie YY, et al., 2021. LC-MS/MS based molecular network analysis of the effects of chemical regulation on the secondary metabolites and biological activities of a fungal strain Aspergillus terreus C23–3. Biotechnol Bull, 37(8):95–110 (in Chinese). https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-1398
Machado FP, Kumla D, Pereira JA, et al., 2021. Prenylated phenylbutyrolactones from cultures of a marine sponge-associated fungus Aspergillus flavipes KUFA1152. Phytochemistry, 185:112709. https://doi.org/10.1016/j.phytochem.2021.112709
Marletta MA, 1993. Nitric oxide synthase structure and mechanism. J Biol Chem, 268(17):12231–12234. https://doi.org/10.1016/S0021-9258(18)31375-9
Martínez-Soto D, Ruiz-Herrera J, 2017. Functional analysis of the MAPK pathways in fungi. Rev Iberoam Micol, 34(4):192–202. https://doi.org/10.1016/j.riam.2017.02.006
Moncada S, Higgs EA, 1991. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest, 21(4):361–374. https://doi.org/10.1111/j.1365-2362.1991.tb01383.x
Nagy G, Clark JM, Buzás EI, et al., 2007. Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett, 111(1):1–5. https://doi.org/10.1016/j.imlet.2007.04.013
Nie YY, Yang WC, Liu YY, et al., 2020. Acetylcholinesterase inhibitors and antioxidants mining from marine fungi: bioassays, bioactivity coupled LC-MS/MS analyses and molecular networking. Mar Life Sci Technol, 2(4): 386–397. https://doi.org/10.1007/s42995-020-00065-9
Oshima H, Hioki K, Popivanova BK, et al., 2011. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology, 140(2):596–607.E7. https://doi.org/10.1053/j.gastro.2010.11.007
Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, et al., 2016. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem, 33:8–14. https://doi.org/10.1016/j.jnutbio.2016.03.013
Raingeaud J, Whitmarsh AJ, Barrett T, et al., 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol, 16(3):1247–1255. https://doi.org/10.1128/MCB.16.3.1247
Sabio G, Davis RJ, 2014. TNF and MAP kinase signalling pathways. Semin Immunol, 26(3):237–245. https://doi.org/10.1016/j.smim.2014.02.009
Umeda M, Yamashita T, Saito M, et al., 1974. Chemical and cytotoxicity survey on the metabolites of toxic fungi. Jpn J Exp Med, 44(1):83–96.
Wang S, Li XM, Teuscher F, et al., 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod, 69(11):1622–1625. https://doi.org/10.1021/np060248n
Wu CY, Chi PL, Hsieh HL, et al., 2010. TLR4-dependent induction of vascular adhesion molecule-1 in rheumatoid arthritis synovial fibroblasts: roles of cytosolic phospholipase A2α/cyclooxygenase-2. J Cell Physiol, 223(2):480–491. https://doi.org/10.1002/jcp.22059
Xie X, Ying WY, Jin SW, 2016. Research progress of cyclooxygenase-2 in the resolution of inflammation. Chem Life, 36(4):461–464 (in Chinese). https://doi.org/10.13488/j.smhx.20160406
Xin Y, Yuan Q, Liu CQ, et al., 2020. MiR-155/GSK-3β mediates anti-inflammatory effect of Chikusetsusaponin IVa by inhibiting NF-κB signaling pathway in LPS-induced RAW264.7 cell. Sci Rep, 10:18303. https://doi.org/10.1038/s41598-020-75358-1
Yamanishi R, Yoshigai E, Okuyama T, et al., 2014. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS ONE, 9(4):e93818. https://doi.org/10.1371/journal.pone.0093818
Yang JM, Yang WC, Liu YY, et al., 2019. Influence of chemical induction on the secondary metabolites and biological activities of a marine-derived fungal strain Aspergillus terreus C23–3. Microbiol China, 46(3):441–452 (in Chinese). https://doi.org/10.13344/j.microbiol.china.180651
Yang JM, Liu YY, Yang WC, et al., 2020. An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23–3. Biosci Biotechnol Biochem, 84(8):1546–1553. https://doi.org/10.1080/09168451.2020.1764838
Zhao MB, Zhou SX, Zhang QY, et al., 2017. Prenylated benzoic acid derivatives from the stem of Euodia lepta. Nat Prod Res, 31(13):1589–1593. https://doi.org/10.1080/14786419.2017.1283493
Zhou Y, Hong Y, Huang HH, 2016. Triptolide attenuates inflammatory response in membranous glomerulonephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press Res, 41(6):901–910. https://doi.org/10.1159/000452591
Zucoloto AZ, Manchope MF, Staurengo-Ferrari L, et al., 2017. Probucol attenuates lipopolysaccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-κB activation and cytokine production. Eur J Pharmacol, 809:52–63. https://doi.org/10.1016/j.ejphar.2017.05.016