A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells

Journal of Zhejiang University-SCIENCE B - Tập 23 - Trang 230-240 - 2022
Minqi Chen1,2, Jinyue Liang1, Yuan Wang1, Yayue Liu1,2,3,4, Chunxia Zhou1,2,3,4, Pengzhi Hong1,2,3,4, Yi Zhang1,2,3,4, Zhong-Ji Qian1,2,3
1College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, China
2Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, China
3Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
4Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China

Tóm tắt

研究从一株徐闻牡丹珊瑚来源的土曲霉C23-3的发酵液中所提取出来的新化合物(S)-3-(2,3-二羟基-3-甲基丁基)-4-羟基苯甲醛((S)-3-(2,3-dihydroxy-3-methylbutyl)-4-hydroxybenzaldehyde)(1)以及已知天然产物4-羟基-3-(3-甲基丁-2-烯-1-基)-苯甲醛(4-hydroxy-3-(3-methylbut-2-en-1-yl)-benzaldehyde)(2)的抗氧化和抗炎活性及其机制。 从一株徐闻牡丹珊瑚来源的土曲霉C23-3的发酵液中所提取出来了一种新化合物1及已知天然产物2, 目前这两种苯甲醛的炎症相关研究尚未有报道。此外, 这两种苯甲醛在未来的炎症相关疾病中有潜在的应用前景。 通过一维(1D), 二维核磁共振谱(2D NMR), 高分辨电喷雾质谱(HR-ESI-MS)和旋光性分析, 得到了一种新的化合物(S)-3-(2,3-二羟基-3-甲基丁基)-4-羟基苯甲醛。运用免疫印迹法, 酶联免疫吸附试验(ELISA), 免疫荧光法和分子对接等方法, 并通过研究一氧化氮(NO), 活性氧(ROS), 诱导型一氧化氮合酶(iNOS), 环氧合酶-2(COX-2), 白细胞介素-6(IL-6), 丝裂原活化蛋白激酶(MAPK)和核因子-κB(NF-κB)信号通路的表达来探讨其抗炎作用。 这两种苯甲醛具有显著的抗炎能力, 是iNOS, COX-2, c-Jun氨基末端激酶(JNK), 细胞外调节蛋白激酶(ERK)和p38的潜在抑制剂。

Tài liệu tham khảo

Afonina IS, Zhong ZY, Karin M, et al., 2017. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol, 18(8):861–869. https://doi.org/10.1038/ni.3772 Aktan F, 2004. iNOS-mediated nitric oxide production and its regulation. Life Sci, 75(6):639–653. https://doi.org/10.1016/j.lfs.2003.10.042 An CL, Kong FD, Ma QY, et al., 2019. Secondary metabolites from marine-derived fungus Aspergillus sp. SCS-KFD66. Chin Tradit Herb Drugs, 50(13):3001–3007 (in Chinese). https://doi.org/10.7501/j.issn.0253-2670.2019.13.002 Arbabi S, Maier RV, 2002. Mitogen-activated protein kinases. Crit Care Med, 30(1):S74–S79. https://doi.org/10.1097/00003246-200201001-00010 Block ML, Zecca L, Hong JS, 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 8(1):57–69. https://doi.org/10.1038/nrn2038 Chen LL, Deng HD, Cui HM, et al., 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208 Chen N, Yu SK, Liu B, et al., 2019. Advances in research on secondary metabolites and activities of marine fungi. Chin J Public Health Manag, 35(1):44–47 (in Chinese). https://doi.org/10.19568/j.cnki.23-1318.2019.01.012 Chertov O, Yang D, Howard OMZ, et al., 2000. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev, 177(1):68–78. https://doi.org/10.1034/j.1600-065X.2000.17702.x Cheung RCF, Ng TB, Wong JH, et al., 2016. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol, 100(4):1645–1666. https://doi.org/10.1007/s00253-015-7244-3 Cho JY, Kim MS, 2012. Antibacterial benzaldehydes produced by seaweed-derived Streptomyces atrovirens PK288–21. Fish Sci, 78(5):1065–1073. https://doi.org/10.1007/s12562-012-0531-3 Cobourne-Duval MK, Taka E, Mendonca P, et al., 2016. The antioxidant effects of thymoquinone in activated BV-2 murine microglial cells. Neurochem Res, 41(12):3227–3238. https://doi.org/10.1007/s11064-016-2047-1 Czaja AJ, 2014. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol, 20(10):2515–2532. https://doi.org/10.3748/wjg.v20.i10.2515 Emam SH, Sonousi A, Osman EO, et al., 2021. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg Chem, 107: 104630. https://doi.org/10.1016/j.bioorg.2021.104630 Ferrero-Miliani L, Nielsen OH, Andersen PS, et al., 2007. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol, 147(2): 227–235. https://doi.org/10.1111/j.1365-2249.2006.03261.x Hayden MS, Ghosh S, 2008. Shared principles in NF-κB signaling. Cell, 132(3):344–362. https://doi.org/10.1016/j.cell.2008.01.020 Kim EK, Choi EJ, 2010. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 1802(4):396–405. https://doi.org/10.1016/j.bbadis.2009.12.009 Kim KS, Cui X, Lee DS, et al., 2014. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages. Int J Mol Sci, 15(12):23749–23765. https://doi.org/10.3390/ijms151223749 Kröncke KD, Fehsel K, Kolb-Bachofen V, 1998. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol, 113(2):147–156. https://doi.org/10.1046/j.1365-2249.1998.00648.x Laroux FS, Pavlick KP, Hines IN, et al., 2001. Role of nitric oxide in inflammation. Acta Physiol Scand, 173(1):113–118. https://doi.org/10.1046/j.1365-201X.2001.00891.x Lawrence T, Willoughby DA, Gilroy DW, 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol, 2(10):787–795. https://doi.org/10.1038/nri915 Li L, Wang LY, Wu ZQ, et al., 2014. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep, 4:6234. https://doi.org/10.1038/srep06234 Li ST, Dai Q, Zhang SX, et al., 2018. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin, 39(8):1294–1304. https://doi.org/10.1038/aps.2017.143 Li Z, Chen-Roetling J, Regan RF, 2009. Increasing expression of H- or L-ferritin protects cortical astrocytes from hemin toxicity. Free Radic Res, 43(6):613–621. https://doi.org/10.1080/10715760902942808 Liu ZG, Wang YP, Wang YQ, et al., 2016. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol, 35:210–216. https://doi.org/10.1016/j.intimp.2016.04.003 Ma XX, Liu YY, Nie YY, et al., 2021. LC-MS/MS based molecular network analysis of the effects of chemical regulation on the secondary metabolites and biological activities of a fungal strain Aspergillus terreus C23–3. Biotechnol Bull, 37(8):95–110 (in Chinese). https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-1398 Machado FP, Kumla D, Pereira JA, et al., 2021. Prenylated phenylbutyrolactones from cultures of a marine sponge-associated fungus Aspergillus flavipes KUFA1152. Phytochemistry, 185:112709. https://doi.org/10.1016/j.phytochem.2021.112709 Marletta MA, 1993. Nitric oxide synthase structure and mechanism. J Biol Chem, 268(17):12231–12234. https://doi.org/10.1016/S0021-9258(18)31375-9 Martínez-Soto D, Ruiz-Herrera J, 2017. Functional analysis of the MAPK pathways in fungi. Rev Iberoam Micol, 34(4):192–202. https://doi.org/10.1016/j.riam.2017.02.006 Moncada S, Higgs EA, 1991. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest, 21(4):361–374. https://doi.org/10.1111/j.1365-2362.1991.tb01383.x Nagy G, Clark JM, Buzás EI, et al., 2007. Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett, 111(1):1–5. https://doi.org/10.1016/j.imlet.2007.04.013 Nie YY, Yang WC, Liu YY, et al., 2020. Acetylcholinesterase inhibitors and antioxidants mining from marine fungi: bioassays, bioactivity coupled LC-MS/MS analyses and molecular networking. Mar Life Sci Technol, 2(4): 386–397. https://doi.org/10.1007/s42995-020-00065-9 Oshima H, Hioki K, Popivanova BK, et al., 2011. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology, 140(2):596–607.E7. https://doi.org/10.1053/j.gastro.2010.11.007 Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, et al., 2016. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem, 33:8–14. https://doi.org/10.1016/j.jnutbio.2016.03.013 Raingeaud J, Whitmarsh AJ, Barrett T, et al., 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol, 16(3):1247–1255. https://doi.org/10.1128/MCB.16.3.1247 Sabio G, Davis RJ, 2014. TNF and MAP kinase signalling pathways. Semin Immunol, 26(3):237–245. https://doi.org/10.1016/j.smim.2014.02.009 Umeda M, Yamashita T, Saito M, et al., 1974. Chemical and cytotoxicity survey on the metabolites of toxic fungi. Jpn J Exp Med, 44(1):83–96. Wang S, Li XM, Teuscher F, et al., 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod, 69(11):1622–1625. https://doi.org/10.1021/np060248n Wu CY, Chi PL, Hsieh HL, et al., 2010. TLR4-dependent induction of vascular adhesion molecule-1 in rheumatoid arthritis synovial fibroblasts: roles of cytosolic phospholipase A2α/cyclooxygenase-2. J Cell Physiol, 223(2):480–491. https://doi.org/10.1002/jcp.22059 Xie X, Ying WY, Jin SW, 2016. Research progress of cyclooxygenase-2 in the resolution of inflammation. Chem Life, 36(4):461–464 (in Chinese). https://doi.org/10.13488/j.smhx.20160406 Xin Y, Yuan Q, Liu CQ, et al., 2020. MiR-155/GSK-3β mediates anti-inflammatory effect of Chikusetsusaponin IVa by inhibiting NF-κB signaling pathway in LPS-induced RAW264.7 cell. Sci Rep, 10:18303. https://doi.org/10.1038/s41598-020-75358-1 Yamanishi R, Yoshigai E, Okuyama T, et al., 2014. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS ONE, 9(4):e93818. https://doi.org/10.1371/journal.pone.0093818 Yang JM, Yang WC, Liu YY, et al., 2019. Influence of chemical induction on the secondary metabolites and biological activities of a marine-derived fungal strain Aspergillus terreus C23–3. Microbiol China, 46(3):441–452 (in Chinese). https://doi.org/10.13344/j.microbiol.china.180651 Yang JM, Liu YY, Yang WC, et al., 2020. An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23–3. Biosci Biotechnol Biochem, 84(8):1546–1553. https://doi.org/10.1080/09168451.2020.1764838 Zhao MB, Zhou SX, Zhang QY, et al., 2017. Prenylated benzoic acid derivatives from the stem of Euodia lepta. Nat Prod Res, 31(13):1589–1593. https://doi.org/10.1080/14786419.2017.1283493 Zhou Y, Hong Y, Huang HH, 2016. Triptolide attenuates inflammatory response in membranous glomerulonephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press Res, 41(6):901–910. https://doi.org/10.1159/000452591 Zucoloto AZ, Manchope MF, Staurengo-Ferrari L, et al., 2017. Probucol attenuates lipopolysaccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-κB activation and cytokine production. Eur J Pharmacol, 809:52–63. https://doi.org/10.1016/j.ejphar.2017.05.016