Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings

Springer Science and Business Media LLC - Tập 1 - Trang 1-9 - 2011
Julia X Yu1, Thomas H Li1
1Department of Cell Biology, Harvard Medical School, Boston, USA

Tóm tắt

Metal oxides in nanoparticle form such as zinc oxide and titanium dioxide now appear on the ingredient lists of household products as common and diverse as cosmetics, sunscreens, toothpaste, and medicine. Previous studies of zinc oxide and titanium dioxide in non-nanoparticle format using animals have found few adverse effects. This has led the FDA to classify zinc oxide as GRAS (generally recognized as safe) for use as a food additive. However, there is no regulation specific for the use of these chemicals in nanoparticle format. Recent studies, however, have begun to raise concerns over the pervasive use of these compounds in nanoparticle forms. Unfortunately, there is a lack of easily-adaptable screening methods that would allow for the detection of their biological effects. We adapted two image-based assays, a fluorescence resonance energy transfer-based caspase activation assay and a green fluorescent protein coupled-LC3 assay, to test for the biological effects of different nanoparticles in a high-throughput format. We show that zinc oxide nanoparticles are cytotoxic. We also show that titanium dioxide nanoparticles are highly effective in inducing autophagy, a cellular disposal mechanism that is often activated when the cell is under stress. We suggest that these image-based assays provide a method of screening for the biological effects of similar compounds that is both efficient and sensitive as well as do not involve the use of animals.

Tài liệu tham khảo

Chen JL, Fayerweather WE: Epidemiologic study of workers exposed to titanium dioxide. J Occup Med. 1988, 30: 937-942. 10.1097/00043764-198812000-00011 Bernard BK, Osheroff MR, Hofmann A, Mennear JH: Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Environ Health. 1990, 29: 417-429. 10.1080/15287399009531402 FDA: Sunscreen Drug Products for Over-the-Counter Human Use; Amendment to the Tentative Final Monograph; Enforcement Policy. Federal Register. 1998, 63: 56584-56589. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z: Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology. 2009, 20: 115101. 10.1088/0957-4484/20/11/115101 Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S: Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol. 2010, 7: 10. 10.1186/1743-8977-7-10 Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, Yezhelyev M, Emmrich F, O'Regan R, Bader A: Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett. 2006, 6: 2826-2832. 10.1021/nl0619711 Degterev A, Boyce M, Yuan J: A decade of caspases. Oncogene. 2003, 22: 8543-8567. 10.1038/sj.onc.1207107 Takemoto K, Nagai T, Miyawaki A, Miura M: Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol. 2003, 160: 235-243. 10.1083/jcb.200207111 Huang J, Klionsky DJ: Autophagy and human disease. Cell Cycle. 2007, 6: 1837-1849. 10.4161/cc.6.15.4511 Linton SD, Aja T, Armstrong RA, Bai X, Chen LS, Chen N, Ching B, Contreras P, Diaz JL, Fisher CD: First-in-class pan caspase inhibitor developed for the treatment of liver disease. J Med Chem. 2005, 48: 6779-6782. 10.1021/jm050307e Yuan J, Lipinski M, Degterev A: Diversity in the mechanisms of neuronal cell death. Neuron. 2003, 40: 401-413. 10.1016/S0896-6273(03)00601-9 Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J: Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006, 281: 14474-14485. 10.1074/jbc.M600364200 Neufeld TP: TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol. 2010, 22: 157-168. 10.1016/j.ceb.2009.11.005 Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, Yuan J: Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl Acad Sci USA. 2010, 107: 14164-14169. 10.1073/pnas.1009485107 Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell. 2010, 140: 313-326. 10.1016/j.cell.2010.01.028 Dussert AS, Gooris E, Hemmerle J: Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci. 1997, 19: 119-129. 10.1111/j.1467-2494.1997.tb00175.x Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, Yuan J: Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007, 104: 19023-19028. 10.1073/pnas.0709695104