Production of novel carbon nanostructures by electrochemical reduction of polychlorinated organic rings under mild conditions for supercapacitors

New Journal of Chemistry - Tập 45 Số 32 - Trang 14765-14778
Züleyha Kudaş1,2,3, Emir Çepni̇1,4,5,3, Emre Gür1,6,3, Duygu Ekinci1,2,3
125240 Erzurum
2Department of Chemistry, Faculty of Sciences, Atatürk University
3Turkey
4Department of Electrical and Electronic Engineering, Faculty of Engineering, Atatürk University
5Department of Nanoscience and Nanoengineering, Nanomaterials Sciences, Atatürk University
6Department of Physics, Faculty of Sciences, Atatürk University

Tóm tắt

Here, new carbon-based nanostructures were prepared via a one-step electrochemical method using hexagonal and pentagonal polychlorinated organic rings as the carbon source.

Từ khóa


Tài liệu tham khảo

Jishi, 1993, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 11385, 10.1103/PhysRevB.48.11385

Ebbesen, 1996, Nature, 382, 54, 10.1038/382054a0

Yao, 2000, Phys. Rev. Lett., 84, 2941, 10.1103/PhysRevLett.84.2941

Castro Neto, 2009, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

Kataura, 2002, Appl. Phys. A: Mater. Sci. Process., 74, 349, 10.1007/s003390201276

Bachilo, 2002, Science, 298, 2361, 10.1126/science.1078727

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Yan, 2014, Adv. Mater., 26, 2022, 10.1002/adma.201304742

Lipomi, 2011, Nat. Nanotechnol., 6, 788, 10.1038/nnano.2011.184

Collins, 2000, Science, 287, 1801, 10.1126/science.287.5459.1801

Kong, 2000, Science, 287, 622, 10.1126/science.287.5453.622

Li, 2003, J. Phys. Chem. B, 107, 6292, 10.1021/jp022505c

Seger, 2009, J. Phys. Chem. C, 113, 7990, 10.1021/jp900360k

Qie, 2012, Adv. Mater., 24, 2047, 10.1002/adma.201104634

Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y

Zhu, 2014, Nano Energy, 6, 180, 10.1016/j.nanoen.2014.04.002

Wang, 2008, Phys. Rev. Lett., 100, 206803, 10.1103/PhysRevLett.100.206803

Xia, 2010, Nano Lett., 10, 715, 10.1021/nl9039636

Bockrath, 2000, Science, 290, 1552, 10.1126/science.290.5496.1552

Guo, 2010, Angew. Chem., Int. Ed., 49, 3014, 10.1002/anie.200906291

Wei, 2007, Nano Lett., 7, 2317, 10.1021/nl070961c

Ross, 2009, Nat. Mater., 8, 208, 10.1038/nmat2379

Kroto, 1985, Nature, 318, 162, 10.1038/318162a0

Iijima, 1991, Nature, 354, 56, 10.1038/354056a0

Kroto, 1992, Nature, 359, 670, 10.1038/359670a0

Mykhailiv, 2017, Inorg. Chim. Acta, 468, 49, 10.1016/j.ica.2017.07.021

Hester, 2002, Appl. Phys. Lett., 80, 2580, 10.1063/1.1465112

Endo, 1992, J. Phys. Chem., 96, 6941, 10.1021/j100196a017

Bandow, 2000, Appl. Phys. A: Mater. Sci. Process., 71, 561, 10.1007/s003390000681

Nasibulin, 2007, Nat. Nanotechnol., 2, 156, 10.1038/nnano.2007.37

Wang, 2008, Adv. Mater., 20, 179, 10.1002/adma.200701143

Qin, 2003, Carbon, 41, 3063, 10.1016/S0008-6223(03)00335-X

Armand, 1997, J. Phys. Chem. Solids, 58, 1853, 10.1016/S0022-3697(97)00092-9

Kang, 2005, J. Am. Chem. Soc., 127, 6534, 10.1021/ja051228v

Che, 1998, Chem. Mater., 10, 260, 10.1021/cm970412f

Kudaş, 2018, Langmuir, 34, 7958, 10.1021/acs.langmuir.8b01177

Jiang, 2000, J. Am. Chem. Soc., 122, 12383, 10.1021/ja002387b

Lee, 2001, Adv. Mater., 13, 1105, 10.1002/1521-4095(200107)13:14<1105::AID-ADMA1105>3.0.CO;2-#

Hu, 2002, Chem. Commun., 1948, 10.1039/b205723a

Chang, 2003, J. Mater. Chem., 13, 981, 10.1039/b212177h

Hu, 2003, Chem. Mater., 15, 1470, 10.1021/cm0209362

Wu, 2006, Inorg. Chem., 45, 8543, 10.1021/ic060827f

Ellis, 2013, Aust. J. Chem., 66, 1435, 10.1071/CH13332

Liu, 2018, Sci. Rep., 8, 1086, 10.1038/s41598-018-19373-3

Wu, 2015, Anal. Chem., 87, 8510, 10.1021/acs.analchem.5b02019

Zhao, 2009, Carbon, 47, 744, 10.1016/j.carbon.2008.11.006

Papirer, 1995, Carbon, 33, 63, 10.1016/0008-6223(94)00111-C

Sadezky, 2005, Carbon, 43, 1731, 10.1016/j.carbon.2005.02.018

Al-Jishi, 1982, Phys. Rev. B: Condens. Matter Mater. Phys., 26, 4514, 10.1103/PhysRevB.26.4514

Cuesta, 1994, Carbon, 32, 1523, 10.1016/0008-6223(94)90148-1

Jawhari, 1995, Carbon, 33, 1561, 10.1016/0008-6223(95)00117-V

Dippel, 1999, Phys. Chem. Chem. Phys., 1, 4707, 10.1039/a904529e

Lee, 2010, Nat. Nanotechnol., 5, 531, 10.1038/nnano.2010.116

Austin, 1973, J. Electrochem. Soc., 120, 251, 10.1149/1.2403429

Xu, 2016, Adv. Mater., 28, 5222, 10.1002/adma.201600586

Feng, 2017, New J. Chem., 41, 9024, 10.1039/C7NJ01478C

Bu, 2017, Adv. Mater., 29, 1700470, 10.1002/adma.201700470

Wang, 2018, J. Mater. Chem. A, 6, 17653, 10.1039/C8TA07573E

Ramalingam, 2020, Biomass Bioenergy, 142, 105800, 10.1016/j.biombioe.2020.105800

Lee, 2013, ACS Nano, 7, 6047, 10.1021/nn401850z

Peng, 2021, J. Power Sources, 482, 228993, 10.1016/j.jpowsour.2020.228993

Ding, 2019, Electrochim. Acta, 306, 549, 10.1016/j.electacta.2019.03.155

Chen, 2014, J. Mater. Chem. A, 2, 5236, 10.1039/c3ta15245f

Obreja, 2008, Physica E, 40, 2596, 10.1016/j.physe.2007.09.044

Haladkar, 2018, Appl. Surf. Sci., 449, 500, 10.1016/j.apsusc.2018.01.031

Stoller, 2010, Energy Environ. Sci., 3, 1294, 10.1039/c0ee00074d

Fang, 2019, J. Power Sources, 418, 24, 10.1016/j.jpowsour.2019.01.076

Wang, 2013, Nano Energy, 2, 530, 10.1016/j.nanoen.2012.12.005

Suna, 2015, Electrochim. Acta, 171, 13, 10.1016/j.electacta.2015.05.009

Ma, 2016, Chem. Commun., 52, 6673, 10.1039/C6CC02147F

Cheng, 2015, Nano Energy, 15, 66, 10.1016/j.nanoen.2015.04.007

Wang, 2018, J. Mater. Chem. A, 6, 19653, 10.1039/C8TA07563H

Cai, 2016, ACS Appl. Mater. Interfaces, 8, 33060, 10.1021/acsami.6b10893