GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace

Applied Soft Computing - Tập 35 - Trang 13-28 - 2015
A. Sanz-Garcia1, J. Fernandez-Ceniceros2, F. Antonanzas-Torres2, A.V. Pernia-Espinoza2, F.J. Martinez-de-Pison2
1Division of Biosciences, University of Helsinki, Helsinki, Finland
2EDMANS Group, Department of Mechanical Engineering, University of La Rioja, Logroño, Spain

Tài liệu tham khảo

Sanz-Garcí a, 2014, Overall models based on ensemble methods for predicting continuous annealing furnace temperature settings, Ironmak. Steelmak., 41, 51, 10.1179/1743281213Y.0000000104 Martínez-De-Pisón, 2011, Optimising annealing process on hot dip galvanising line based on robust predictive models adjusted with genetic algorithms, Ironmak. Steelmak., 38, 218, 10.1179/1743281210Y.0000000001 Martí nez-de Pisón, 2010, Optimum model for predicting temperature settings on hot dip galvanising line, Ironmak. Steelmak., 37, 187, 10.1179/030192309X12573371383604 Bloch, 1997, Neural intelligent control for a steel plant, IEEE Trans. Neural Netw., 8, 910, 10.1109/72.595889 Kim, 1998, Application of neural network to the supervisory control of a reheating furnace in the steel industry, Control Eng. Pract., 6, 1009, 10.1016/S0967-0661(98)00098-7 Perní a-Espinoza, 2005, Steel annealing furnace robust neural network model, Ironmak. Steelmak., 32, 418, 10.1179/174328105X28829 Yang, 2011, Development of a parsimonious ga-nn ensemble model with a case study for charpy impact energy prediction, Adv. Eng. Softw., 42, 435, 10.1016/j.advengsoft.2011.03.012 Sanz-García, 2014, Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace, Ironmak. Steelmak., 41, 87, 10.1179/1743281212Y.0000000094 Yang, 2004, Roll load prediction - data collection, analysis and neural network modelling, J. Mater. Process. Technol., 152, 304, 10.1016/j.jmatprotec.2004.04.372 Helle, 2009, Assessment of the state of the blast furnace high temperature region by tuyere core drilling, ISIJ Int., 49, 203, 10.2355/isijinternational.49.203 Corchado, 2012, Editorial: New trends and applications on hybrid artificial intelligence systems, Neurocomputing, 5, 61, 10.1016/j.neucom.2011.06.021 Fernandez-Ceniceros, 2015, A numerical-informational approach for characterising the ductile behaviour of the t-stub component. part 2: Parsimonious soft-computing-based metamodel, Eng. Struct., 82, 249, 10.1016/j.engstruct.2014.06.047 Antonanzas-Torres, 2014, Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain, Renew. Energy, 71, 534, 10.1016/j.renene.2014.06.010 Antonanzas-Torres, 2015, Generation of daily global solar irradiation with support vector machines for regression, Energy Convers. Manag., 96, 277, 10.1016/j.enconman.2015.02.086 Seni, 2010 Reif, 2012, Meta-learning for evolutionary parameter optimization of classifiers, Mach. Learn., 87, 357, 10.1007/s10994-012-5286-7 Xue, 2014, Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms, Appl. Soft Comput., 18, 261, 10.1016/j.asoc.2013.09.018 Oduguwa, 2005, Evolutionary computing in manufacturing industry: an overview of recent applications, Appl. Soft Comput., 5, 281, 10.1016/j.asoc.2004.08.003 Caama no, 2013, Evolutionary algorithm characterization in real parameter optimization problems, Appl. Soft Comput., 13, 1902, 10.1016/j.asoc.2013.01.002 Corchado, 2014, Recent trends in intelligent data analysis, Neurocomputing, 126, 1, 10.1016/j.neucom.2013.07.001 Valdez, 2014, A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation, Expert Syst. Appl., 41, 6459, 10.1016/j.eswa.2014.04.015 Huang, 2014, Intelligent feature extraction and classification of anuran vocalizations, Appl. Soft Comput., 19, 1, 10.1016/j.asoc.2014.01.030 Huang, 2007, ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data, Biosystems, 90, 516, 10.1016/j.biosystems.2006.12.003 Ding, 2011, Spectral and wavelet-based feature selection with particle swarm optimization for hyperspectral classification, J. Softw., 6, 1248, 10.4304/jsw.6.7.1248-1256 Vieira, 2013, Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients, Appl. Soft Comput., 13, 3494, 10.1016/j.asoc.2013.03.021 Huang, 2008, A distributed PSO-SVM hybrid system with feature selection and parameter optimization, Appl. Soft Comput., 8, 1381, 10.1016/j.asoc.2007.10.007 Ahila, 2015, An integrated {PSO} for parameter determination and feature selection of {ELM} and its application in classification of power system disturbances, Appl. Soft Comput., 32, 23, 10.1016/j.asoc.2015.03.036 Dhiman, 2014, Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures, Appl. Soft Comput., 19, 8, 10.1016/j.asoc.2014.01.029 Castillo, 2015, New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system, Inf. Sci., 294, 203, 10.1016/j.ins.2014.09.040 Castillo, 2015, A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot, Appl. Soft Comput., 28, 150, 10.1016/j.asoc.2014.12.002 Winkler, 2011, Analysis of selected evolutionary algorithms in feature selection and parameter optimization for data based tumor marker modeling, 335 Chen, 2011, A genetic algorithm-based approach to cost-sensitive bankruptcy prediction, Expert Syst. Appl., 38, 12939, 10.1016/j.eswa.2011.04.090 Hastie, 2009 Michalewicz, 1991, Handling constraints in genetic algorithms, 151 Vapnik, 1998 Drucker, 1997, Support vector regression machines, Adv. Neural Inf. Process. Syst., 9, 155 Schölkopf, 2002 Vapnik, 1995 Smola, 2004, A tutorial on support vector regression, Stat. Comput., 14, 199, 10.1023/B:STCO.0000035301.49549.88 D.N.A. Asuncion, UCI machine learning repository (2007). http://www.ics.uci.edu/∼mlearn/MLRepository.html. StatLib–Datasets Archive. http://lib.stat.cmu.edu/datasets/. Core Team, 2013