GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace
Tài liệu tham khảo
Sanz-Garcí a, 2014, Overall models based on ensemble methods for predicting continuous annealing furnace temperature settings, Ironmak. Steelmak., 41, 51, 10.1179/1743281213Y.0000000104
Martínez-De-Pisón, 2011, Optimising annealing process on hot dip galvanising line based on robust predictive models adjusted with genetic algorithms, Ironmak. Steelmak., 38, 218, 10.1179/1743281210Y.0000000001
Martí nez-de Pisón, 2010, Optimum model for predicting temperature settings on hot dip galvanising line, Ironmak. Steelmak., 37, 187, 10.1179/030192309X12573371383604
Bloch, 1997, Neural intelligent control for a steel plant, IEEE Trans. Neural Netw., 8, 910, 10.1109/72.595889
Kim, 1998, Application of neural network to the supervisory control of a reheating furnace in the steel industry, Control Eng. Pract., 6, 1009, 10.1016/S0967-0661(98)00098-7
Perní a-Espinoza, 2005, Steel annealing furnace robust neural network model, Ironmak. Steelmak., 32, 418, 10.1179/174328105X28829
Yang, 2011, Development of a parsimonious ga-nn ensemble model with a case study for charpy impact energy prediction, Adv. Eng. Softw., 42, 435, 10.1016/j.advengsoft.2011.03.012
Sanz-García, 2014, Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace, Ironmak. Steelmak., 41, 87, 10.1179/1743281212Y.0000000094
Yang, 2004, Roll load prediction - data collection, analysis and neural network modelling, J. Mater. Process. Technol., 152, 304, 10.1016/j.jmatprotec.2004.04.372
Helle, 2009, Assessment of the state of the blast furnace high temperature region by tuyere core drilling, ISIJ Int., 49, 203, 10.2355/isijinternational.49.203
Corchado, 2012, Editorial: New trends and applications on hybrid artificial intelligence systems, Neurocomputing, 5, 61, 10.1016/j.neucom.2011.06.021
Fernandez-Ceniceros, 2015, A numerical-informational approach for characterising the ductile behaviour of the t-stub component. part 2: Parsimonious soft-computing-based metamodel, Eng. Struct., 82, 249, 10.1016/j.engstruct.2014.06.047
Antonanzas-Torres, 2014, Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain, Renew. Energy, 71, 534, 10.1016/j.renene.2014.06.010
Antonanzas-Torres, 2015, Generation of daily global solar irradiation with support vector machines for regression, Energy Convers. Manag., 96, 277, 10.1016/j.enconman.2015.02.086
Seni, 2010
Reif, 2012, Meta-learning for evolutionary parameter optimization of classifiers, Mach. Learn., 87, 357, 10.1007/s10994-012-5286-7
Xue, 2014, Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms, Appl. Soft Comput., 18, 261, 10.1016/j.asoc.2013.09.018
Oduguwa, 2005, Evolutionary computing in manufacturing industry: an overview of recent applications, Appl. Soft Comput., 5, 281, 10.1016/j.asoc.2004.08.003
Caama no, 2013, Evolutionary algorithm characterization in real parameter optimization problems, Appl. Soft Comput., 13, 1902, 10.1016/j.asoc.2013.01.002
Corchado, 2014, Recent trends in intelligent data analysis, Neurocomputing, 126, 1, 10.1016/j.neucom.2013.07.001
Valdez, 2014, A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation, Expert Syst. Appl., 41, 6459, 10.1016/j.eswa.2014.04.015
Huang, 2014, Intelligent feature extraction and classification of anuran vocalizations, Appl. Soft Comput., 19, 1, 10.1016/j.asoc.2014.01.030
Huang, 2007, ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data, Biosystems, 90, 516, 10.1016/j.biosystems.2006.12.003
Ding, 2011, Spectral and wavelet-based feature selection with particle swarm optimization for hyperspectral classification, J. Softw., 6, 1248, 10.4304/jsw.6.7.1248-1256
Vieira, 2013, Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients, Appl. Soft Comput., 13, 3494, 10.1016/j.asoc.2013.03.021
Huang, 2008, A distributed PSO-SVM hybrid system with feature selection and parameter optimization, Appl. Soft Comput., 8, 1381, 10.1016/j.asoc.2007.10.007
Ahila, 2015, An integrated {PSO} for parameter determination and feature selection of {ELM} and its application in classification of power system disturbances, Appl. Soft Comput., 32, 23, 10.1016/j.asoc.2015.03.036
Dhiman, 2014, Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures, Appl. Soft Comput., 19, 8, 10.1016/j.asoc.2014.01.029
Castillo, 2015, New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system, Inf. Sci., 294, 203, 10.1016/j.ins.2014.09.040
Castillo, 2015, A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot, Appl. Soft Comput., 28, 150, 10.1016/j.asoc.2014.12.002
Winkler, 2011, Analysis of selected evolutionary algorithms in feature selection and parameter optimization for data based tumor marker modeling, 335
Chen, 2011, A genetic algorithm-based approach to cost-sensitive bankruptcy prediction, Expert Syst. Appl., 38, 12939, 10.1016/j.eswa.2011.04.090
Hastie, 2009
Michalewicz, 1991, Handling constraints in genetic algorithms, 151
Vapnik, 1998
Drucker, 1997, Support vector regression machines, Adv. Neural Inf. Process. Syst., 9, 155
Schölkopf, 2002
Vapnik, 1995
Smola, 2004, A tutorial on support vector regression, Stat. Comput., 14, 199, 10.1023/B:STCO.0000035301.49549.88
D.N.A. Asuncion, UCI machine learning repository (2007). http://www.ics.uci.edu/∼mlearn/MLRepository.html.
StatLib–Datasets Archive. http://lib.stat.cmu.edu/datasets/.
Core Team, 2013