A Fokker–Planck control framework for multidimensional stochastic processes
Tài liệu tham khảo
Gı¯hman, 1972
Karatzas, 1991
Fleming, 1975
Primak, 2004
Risken, 1996
Forbes, 2004, Control design for first-order processes: shaping the probability density of the process state, J. process control, 14, 399, 10.1016/j.jprocont.2003.07.002
Jumarie, 1992, Tracking control of nonlinear stochastic systems by using path cross-entropy and Fokker–Planck equation, Internat. J. Systems Sci., 23, 1101, 10.1080/00207729208949368
Kárný, 1996, Towards fully probabilistic control design, Automatica, 32, 1719, 10.1016/S0005-1098(96)80009-4
Wang, 1999, Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability, IEEE Trans. on Automatic Control, 44, 2103, 10.1109/9.802925
Annunziato, 2010, Optimal control of probability density functions of stochastic processes, Math. Model. Anal., 15, 393, 10.3846/1392-6292.2010.15.393-407
Mayne, 1990, Receding horizon control for nonlinear systems, IEEE Trans. Automat. Control, 35, 814, 10.1109/9.57020
Magni, 2009
Grüne, 2008, On the infinite horizon performance of receding horizon controllers, IEEE Trans. Automat. Control, 53, 2100, 10.1109/TAC.2008.927799
Ito, 1990, Receding horizon optimal control for infinite dimensional systems, ESAIM Control Optim. Calc. Var., 35, 814
Jordan, 1998, Variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., 29, 1, 10.1137/S0036141096303359
Aronson, 1968, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 22, 607
Le Bris, 2008, Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33, 1272, 10.1080/03605300801970952
Lions, 1971
Borzì, 2003, Multigrid methods for parabolic distributed optimal control problems, J. Comput. Appl. Math., 157, 365, 10.1016/S0377-0427(03)00417-5
Tröltzsch, 2010
Addou, 2002, Existence and uniqueness of optimal control for a distributed-parameter bilinear system, J. Dynamical Contr. Systems, 8, 141, 10.1023/A:1015372725255
Evans, 2002, vol. 19
Chang, 1970, A practical scheme for Fokker–Planck equations, J. Comput. Phys., 6, 1, 10.1016/0021-9991(70)90001-X
González Andrade, 2010, Multigrid second-order accurate solution of parabolic control-constrained problems, Comput. Optim. Appl.
Burkardt, 2002, Insensitive functionals, inconsistent gradients, spurious minima, and regularized functionals in flow optimization problems, Int. J. Comput. Fluid Dyn., 16, 171, 10.1080/10618560290034663
Y. Ou, E. Schuster, On the stability of receding horizon control of bilinear parabolic PDE systems, in: Proceedings of the 2010 IEEE Conference on Decision and Control, Atlanta, Georgia, December 15–17, 2010.
Gustafsson, 2010, An implementation framework for solving high-dimensional PDEs on massively parallel computers, 417
bin Zubair, 2007, Multigrid for high dimensional elliptic partial differential equations on non-equidistant grid, SIAM J. Sci. Comput., 29, 1613, 10.1007/978-3-642-65024-6
Gilbert, 1992, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2, 21, 10.1137/0802003
Shanno, 1978, Conjugate gradient methods with inexact searches, Math. Oper. Res., 3, 244, 10.1287/moor.3.3.244
Nocedal, 1999
Dai, 1999, A nonlinear conjugate gradient with a strong global convergence property, SIAM J. Optim., 10, 177, 10.1137/S1052623497318992
Gard, 1976, On a stochastic differential equation modeling a prey–predator evolution, J. Appl. Probab., 13, 429, 10.1017/S0021900200103985
Yeung, 1995, Stationary probability distributions of some Lotka–Volterra types of stochastic predation systems, Stoch. Anal. Appl., 13, 503, 10.1080/07362999508809412
Borzì, 2004, Solution of lambda-omega systems: theta-schemes and multigrid methods, Numer. Math., 98, 581, 10.1007/s00211-004-0545-6
Cox, 2001