Biofilms: the matrix revisited

Trends in Microbiology - Tập 13 - Trang 20-26 - 2005
Steven S. Branda1, Åshild Vik1, Lisa Friedman2, Roberto Kolter1
1Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 USA
2Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421, USA

Tài liệu tham khảo

Davey, 2000, Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 64, 847, 10.1128/MMBR.64.4.847-867.2000 Edwards, 2000, An archaeal iron-oxidizing extreme acidophile important in acid mine drainage, Science, 287, 1796, 10.1126/science.287.5459.1796 Kolenbrander, 1993, Adhere today, here tomorrow: oral bacterial adherence, J. Bacteriol., 175, 3247, 10.1128/jb.175.11.3247-3252.1993 Sutherland, 2001, The biofilm matrix–an immobilized but dynamic microbial environment, Trends Microbiol., 9, 222, 10.1016/S0966-842X(01)02012-1 Christensen, 1999, Molecular tools for study of biofilm physiology, Methods Enzymol., 310, 20, 10.1016/S0076-6879(99)10004-1 O'Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 28, 449, 10.1046/j.1365-2958.1998.00797.x Branda, 2001, Fruiting body formation by Bacillus subtilis, Proc. Natl. Acad. Sci. U. S. A., 98, 11621, 10.1073/pnas.191384198 Friedman, 2004, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol., 51, 675, 10.1046/j.1365-2958.2003.03877.x Yildiz, 1999, Vibrio cholerae O1 el Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation, Proc. Natl. Acad. Sci. U. S. A., 96, 4028, 10.1073/pnas.96.7.4028 Zogaj, 2001, The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix, Mol. Microbiol., 39, 1452, 10.1046/j.1365-2958.2001.02337.x Solano, 2002, Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose, Mol. Microbiol., 43, 793, 10.1046/j.1365-2958.2002.02802.x Stewart, 2001, Antibiotic resistance of bacteria in biofilms, Lancet, 358, 135, 10.1016/S0140-6736(01)05321-1 Whitchurch, 2002, Extracellular DNA required for bacterial biofilm formation, Science, 295, 1487, 10.1126/science.295.5559.1487 Webb, 2003, Cell death in Pseudomonas aeruginosa biofilm development, J. Bacteriol., 185, 4585, 10.1128/JB.185.15.4585-4592.2003 Yarwood, 2004, Quorum sensing in Staphylococcus aureus biofilms, J. Bacteriol., 186, 1838, 10.1128/JB.186.6.1838-1850.2004 Ross, 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev., 55, 35, 10.1128/MMBR.55.1.35-58.1991 Tal, 1998, Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes, J. Bacteriol., 180, 4416, 10.1128/JB.180.17.4416-4425.1998 Ausmees, 2001, Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity, FEMS Microbiol. Lett., 204, 163, 10.1111/j.1574-6968.2001.tb10880.x Bomchil, 2003, Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture, J. Bacteriol., 185, 1384, 10.1128/JB.185.4.1384-1390.2003 Rashid, 2003, Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae, FEMS Microbiol. Lett., 227, 113, 10.1016/S0378-1097(03)00657-8 Tischler, 2004, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation, Mol. Microbiol., 53, 857, 10.1111/j.1365-2958.2004.04155.x Galperin, 2004, Bacterial signal transduction network in a genomic perspective, Environ. Microbiol., 6, 552, 10.1111/j.1462-2920.2004.00633.x Paul, 2004, Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain, Genes Dev., 18, 715, 10.1101/gad.289504 Gotz, 2002, Staphylococcus and biofilms, Mol. Microbiol., 43, 1367, 10.1046/j.1365-2958.2002.02827.x Mack, 1994, Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin, Infect. Immun., 62, 3244, 10.1128/IAI.62.8.3244-3253.1994 Mack, 1996, The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis, J. Bacteriol., 178, 175, 10.1128/jb.178.1.175-183.1996 Maira-Litran, 2002, Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide, Infect. Immun., 70, 4433, 10.1128/IAI.70.8.4433-4440.2002 Wang, 2004, The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation, J. Bacteriol., 186, 2724, 10.1128/JB.186.9.2724-2734.2004 Darby, 2002, Caenorhabditis elegans: plague bacteria biofilm blocks food intake, Nature, 417, 243, 10.1038/417243a Deretic, 1990, Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli, Mol. Microbiol., 4, 189, 10.1111/j.1365-2958.1990.tb00586.x Wozniak, 2003, Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms, Proc. Natl. Acad. Sci. U. S. A., 100, 7907, 10.1073/pnas.1231792100 Matsukawa, 2004, Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development, J. Bacteriol., 186, 4449, 10.1128/JB.186.14.4449-4456.2004 Friedman, 2004, Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix, J. Bacteriol., 186, 4457, 10.1128/JB.186.14.4457-4465.2004 Jackson, 2004, Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation, J. Bacteriol., 186, 4466, 10.1128/JB.186.14.4466-4475.2004 Davies, 1998, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295, 10.1126/science.280.5361.295 Davey, 2003, Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1, J. Bacteriol., 185, 1027, 10.1128/JB.185.3.1027-1036.2003 Whiteley, 1999, Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 96, 13904, 10.1073/pnas.96.24.13904 Jobling, 1997, Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene, Mol. Microbiol., 26, 1023, 10.1046/j.1365-2958.1997.6402011.x Zhu, 2002, Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc. Natl. Acad. Sci. U. S. A., 99, 3129, 10.1073/pnas.052694299 Zhu, 2003, Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae, Dev. Cell, 5, 647, 10.1016/S1534-5807(03)00295-8 Hammer, 2003, Quorum sensing controls biofilm formation in Vibrio cholerae, Mol. Microbiol., 50, 101, 10.1046/j.1365-2958.2003.03688.x Yildiz, 2004, Molecular analysis of rugosity in a Vibrio cholerae O1 el Tor phase variant, Mol. Microbiol., 53, 497, 10.1111/j.1365-2958.2004.04154.x Kierek, 2003, The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water, Proc. Natl. Acad. Sci. U. S. A., 100, 14357, 10.1073/pnas.2334614100 Ghigo, 2001, Natural conjugative plasmids induce bacterial biofilm development, Nature, 412, 442, 10.1038/35086581 Reisner, 2003, Development and maturation of Escherichia coli K-12 biofilms, Mol. Microbiol., 48, 933, 10.1046/j.1365-2958.2003.03490.x Sheikh, 2001, Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli, Mol. Microbiol., 41, 983, 10.1046/j.1365-2958.2001.02512.x O'Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x Klausen, 2003, Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants, Mol. Microbiol., 48, 1511, 10.1046/j.1365-2958.2003.03525.x Klausen, 2003, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms, Mol. Microbiol., 50, 61, 10.1046/j.1365-2958.2003.03677.x Vallet, 2001, The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation, Proc. Natl. Acad. Sci. U. S. A., 98, 6911, 10.1073/pnas.111551898 Sauer, 2000, Bacterial pili: molecular mechanisms of pathogenesis, Curr. Opin. Microbiol., 3, 65, 10.1016/S1369-5274(99)00053-3 Wu, 1998, Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213, Mol. Microbiol., 28, 487, 10.1046/j.1365-2958.1998.00805.x Fenno, 1995, The fimA locus of Streptococcus parasanguis encodes an ATP-binding membrane transport system, Mol. Microbiol., 15, 849, 10.1111/j.1365-2958.1995.tb02355.x Hinsa, 2003, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Mol. Microbiol., 49, 905, 10.1046/j.1365-2958.2003.03615.x Espinosa-Urgel, 2000, Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds, J. Bacteriol., 182, 2363, 10.1128/JB.182.9.2363-2369.2000 Eisenstein, 1981, Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control, Science, 214, 337, 10.1126/science.6116279 Owen, 1996, Phase-variable outer membrane proteins in Escherichia coli, FEMS Immunol. Med. Microbiol., 16, 63, 10.1111/j.1574-695X.1996.tb00124.x Drenkard, 2002, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature, 416, 740, 10.1038/416740a Andrewes, 1922, Studies on group-agglutination. I. The Salmonella group and its antigenic structure, J. Pathol. Bacteriol., 25, 1509, 10.1002/path.1700250411 Hogan, 2002, Pseudomonas–Candida interactions: an ecological role for virulence factors, Science, 296, 2229, 10.1126/science.1070784