Biofilms: the matrix revisited
Tài liệu tham khảo
Davey, 2000, Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 64, 847, 10.1128/MMBR.64.4.847-867.2000
Edwards, 2000, An archaeal iron-oxidizing extreme acidophile important in acid mine drainage, Science, 287, 1796, 10.1126/science.287.5459.1796
Kolenbrander, 1993, Adhere today, here tomorrow: oral bacterial adherence, J. Bacteriol., 175, 3247, 10.1128/jb.175.11.3247-3252.1993
Sutherland, 2001, The biofilm matrix–an immobilized but dynamic microbial environment, Trends Microbiol., 9, 222, 10.1016/S0966-842X(01)02012-1
Christensen, 1999, Molecular tools for study of biofilm physiology, Methods Enzymol., 310, 20, 10.1016/S0076-6879(99)10004-1
O'Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 28, 449, 10.1046/j.1365-2958.1998.00797.x
Branda, 2001, Fruiting body formation by Bacillus subtilis, Proc. Natl. Acad. Sci. U. S. A., 98, 11621, 10.1073/pnas.191384198
Friedman, 2004, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol., 51, 675, 10.1046/j.1365-2958.2003.03877.x
Yildiz, 1999, Vibrio cholerae O1 el Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation, Proc. Natl. Acad. Sci. U. S. A., 96, 4028, 10.1073/pnas.96.7.4028
Zogaj, 2001, The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix, Mol. Microbiol., 39, 1452, 10.1046/j.1365-2958.2001.02337.x
Solano, 2002, Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose, Mol. Microbiol., 43, 793, 10.1046/j.1365-2958.2002.02802.x
Stewart, 2001, Antibiotic resistance of bacteria in biofilms, Lancet, 358, 135, 10.1016/S0140-6736(01)05321-1
Whitchurch, 2002, Extracellular DNA required for bacterial biofilm formation, Science, 295, 1487, 10.1126/science.295.5559.1487
Webb, 2003, Cell death in Pseudomonas aeruginosa biofilm development, J. Bacteriol., 185, 4585, 10.1128/JB.185.15.4585-4592.2003
Yarwood, 2004, Quorum sensing in Staphylococcus aureus biofilms, J. Bacteriol., 186, 1838, 10.1128/JB.186.6.1838-1850.2004
Ross, 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev., 55, 35, 10.1128/MMBR.55.1.35-58.1991
Tal, 1998, Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes, J. Bacteriol., 180, 4416, 10.1128/JB.180.17.4416-4425.1998
Ausmees, 2001, Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity, FEMS Microbiol. Lett., 204, 163, 10.1111/j.1574-6968.2001.tb10880.x
Bomchil, 2003, Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture, J. Bacteriol., 185, 1384, 10.1128/JB.185.4.1384-1390.2003
Rashid, 2003, Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae, FEMS Microbiol. Lett., 227, 113, 10.1016/S0378-1097(03)00657-8
Tischler, 2004, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation, Mol. Microbiol., 53, 857, 10.1111/j.1365-2958.2004.04155.x
Galperin, 2004, Bacterial signal transduction network in a genomic perspective, Environ. Microbiol., 6, 552, 10.1111/j.1462-2920.2004.00633.x
Paul, 2004, Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain, Genes Dev., 18, 715, 10.1101/gad.289504
Gotz, 2002, Staphylococcus and biofilms, Mol. Microbiol., 43, 1367, 10.1046/j.1365-2958.2002.02827.x
Mack, 1994, Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin, Infect. Immun., 62, 3244, 10.1128/IAI.62.8.3244-3253.1994
Mack, 1996, The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis, J. Bacteriol., 178, 175, 10.1128/jb.178.1.175-183.1996
Maira-Litran, 2002, Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide, Infect. Immun., 70, 4433, 10.1128/IAI.70.8.4433-4440.2002
Wang, 2004, The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation, J. Bacteriol., 186, 2724, 10.1128/JB.186.9.2724-2734.2004
Darby, 2002, Caenorhabditis elegans: plague bacteria biofilm blocks food intake, Nature, 417, 243, 10.1038/417243a
Deretic, 1990, Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli, Mol. Microbiol., 4, 189, 10.1111/j.1365-2958.1990.tb00586.x
Wozniak, 2003, Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms, Proc. Natl. Acad. Sci. U. S. A., 100, 7907, 10.1073/pnas.1231792100
Matsukawa, 2004, Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development, J. Bacteriol., 186, 4449, 10.1128/JB.186.14.4449-4456.2004
Friedman, 2004, Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix, J. Bacteriol., 186, 4457, 10.1128/JB.186.14.4457-4465.2004
Jackson, 2004, Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation, J. Bacteriol., 186, 4466, 10.1128/JB.186.14.4466-4475.2004
Davies, 1998, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295, 10.1126/science.280.5361.295
Davey, 2003, Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1, J. Bacteriol., 185, 1027, 10.1128/JB.185.3.1027-1036.2003
Whiteley, 1999, Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 96, 13904, 10.1073/pnas.96.24.13904
Jobling, 1997, Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene, Mol. Microbiol., 26, 1023, 10.1046/j.1365-2958.1997.6402011.x
Zhu, 2002, Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc. Natl. Acad. Sci. U. S. A., 99, 3129, 10.1073/pnas.052694299
Zhu, 2003, Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae, Dev. Cell, 5, 647, 10.1016/S1534-5807(03)00295-8
Hammer, 2003, Quorum sensing controls biofilm formation in Vibrio cholerae, Mol. Microbiol., 50, 101, 10.1046/j.1365-2958.2003.03688.x
Yildiz, 2004, Molecular analysis of rugosity in a Vibrio cholerae O1 el Tor phase variant, Mol. Microbiol., 53, 497, 10.1111/j.1365-2958.2004.04154.x
Kierek, 2003, The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water, Proc. Natl. Acad. Sci. U. S. A., 100, 14357, 10.1073/pnas.2334614100
Ghigo, 2001, Natural conjugative plasmids induce bacterial biofilm development, Nature, 412, 442, 10.1038/35086581
Reisner, 2003, Development and maturation of Escherichia coli K-12 biofilms, Mol. Microbiol., 48, 933, 10.1046/j.1365-2958.2003.03490.x
Sheikh, 2001, Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli, Mol. Microbiol., 41, 983, 10.1046/j.1365-2958.2001.02512.x
O'Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x
Klausen, 2003, Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants, Mol. Microbiol., 48, 1511, 10.1046/j.1365-2958.2003.03525.x
Klausen, 2003, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms, Mol. Microbiol., 50, 61, 10.1046/j.1365-2958.2003.03677.x
Vallet, 2001, The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation, Proc. Natl. Acad. Sci. U. S. A., 98, 6911, 10.1073/pnas.111551898
Sauer, 2000, Bacterial pili: molecular mechanisms of pathogenesis, Curr. Opin. Microbiol., 3, 65, 10.1016/S1369-5274(99)00053-3
Wu, 1998, Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213, Mol. Microbiol., 28, 487, 10.1046/j.1365-2958.1998.00805.x
Fenno, 1995, The fimA locus of Streptococcus parasanguis encodes an ATP-binding membrane transport system, Mol. Microbiol., 15, 849, 10.1111/j.1365-2958.1995.tb02355.x
Hinsa, 2003, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Mol. Microbiol., 49, 905, 10.1046/j.1365-2958.2003.03615.x
Espinosa-Urgel, 2000, Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds, J. Bacteriol., 182, 2363, 10.1128/JB.182.9.2363-2369.2000
Eisenstein, 1981, Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control, Science, 214, 337, 10.1126/science.6116279
Owen, 1996, Phase-variable outer membrane proteins in Escherichia coli, FEMS Immunol. Med. Microbiol., 16, 63, 10.1111/j.1574-695X.1996.tb00124.x
Drenkard, 2002, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature, 416, 740, 10.1038/416740a
Andrewes, 1922, Studies on group-agglutination. I. The Salmonella group and its antigenic structure, J. Pathol. Bacteriol., 25, 1509, 10.1002/path.1700250411
Hogan, 2002, Pseudomonas–Candida interactions: an ecological role for virulence factors, Science, 296, 2229, 10.1126/science.1070784