Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa
Tóm tắt
Từ khóa
Tài liệu tham khảo
Angel, 1997, The use of quartz as an internal pressure standard in high-pressure crystallography, J. Appl. Crystallogr., 30, 461, 10.1107/S0021889897000861
Angel, 2001, High-temperature–high-pressure diffractometry, vol. 41, 559
Bell, 2003, Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum, J. Geophys. Res., 108
Constable, 2006, SEO3: a new model of olivine electrical conductivity, Geophys. J. Int., 166, 435, 10.1111/j.1365-246X.2006.03041.x
Constable, 1997, Simultaneous modelling of thermopower and electrical conduction in olivine, Phys. Chem. Min., 24, 319, 10.1007/s002690050044
Constable, 1992, The electrical conductivity of an isotropic olivine mantle, J. Geophys. Res., 97, 3397, 10.1029/91JB02453
Du Frane, 2005, Anisotropy of electrical conductivity in dry olivine, Geophys. Res. Lett., 32, 24315, 10.1029/2005GL023879
Eaton, 2004, Lithospheric anisotropy structure inferred from collocated teleseismic and magnetotelluric observations: Great Slave Lake shear zone, northern Canada, Geophys. Res. Lett., 31, L19614, 10.1029/2004GL020939
Evans, 2005, Geophysical evidence from the MELT area for compositional controls on oceanic plates, Nature, 437, 249, 10.1038/nature04014
Fu-jita, 2004, Electrical conductivity measurement of granulite under mid- to lower crustal pressure–temperature conditions, Geophys. J. Int., 157, 79, 10.1111/j.1365-246X.2004.02165.x
Gatzemeier, 2005, 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms, Phys. Earth Planet. Int., 149, 225, 10.1016/j.pepi.2004.10.004
Hirsch, 1993, Electrical conductivity and polaron mobility in Fe-bearing olivine, Geophys. J. Int., 114, 36, 10.1111/j.1365-246X.1993.tb01464.x
Hushur, 2009, Crystal chemistry of hydrous forsterite and its vibrational properties up to 41GPa, Am. Mineral., 94, 751, 10.2138/am.2009.2990
Isaak, 1989, Elasticity of single crystal forsterite measured to 1700K, J. Geophys. Res., 94, 5895, 10.1029/JB094iB05p05895
Karato, 1990, The role of hydrogen in the electrical-conductivity of the upper mantle, Nature, 347, 272, 10.1038/347272a0
Katsura, 2009, Thermal expansion of forsterite at high pressures determined by in situ X-ray diffraction: the adiabatic geotherm in the upper mantle, Phys. Earth Planet. Int., 174, 86, 10.1016/j.pepi.2008.08.002
Keyes, 1963, Continuum models of the effect of pressure on activated process, 71
King, 1979, Diffracted beam crystal centering and its application to high pressure crystallography, J. Appl. Crystallogr., 12, 374, 10.1107/S0021889879012723
Kohlstedt, 1996, Solubility of water in the alpha, beta and gamma phases of (Mg,Fe)2 SiO4, Contrib. Min. Petrol., 123, 345, 10.1007/s004100050161
Kohlstedt, 1998, Diffusion of hydrogen and point defects in olivine, Z. Phys. Chem., 207, 147, 10.1524/zpch.1998.207.Part_1_2.147
Liu, 2006, Thermal equation of state of (Mg0.9Fe0.1)2SiO4 olivine, Phys. Earth Planet. Int., 157, 188, 10.1016/j.pepi.2006.04.003
Mosenfelder, 2006, Hydrogen incorporation in olivine from 2–12GPa, Am. Mineral., 91, 285, 10.2138/am.2006.1943
Neal, 2000, Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean, J. Geophys. Res., 105, 8229, 10.1029/1999JB900447
Paterson, 1982, The determination of hydroxyl by infrared-absorption in quartz, silicate-glasses and similar materials, Bull. Mineral., 105, 20
Poe, 1999, In-situ complex impedance spectroscopy of mantle minerals measured at 20GPa and 1400°C, Phase Transit., 68, 453, 10.1080/01411599908224527
Ralph, 1982, A computer program for refinement crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constrains, J. Appl. Crystallogr., 15, 537, 10.1107/S0021889882012539
Romano, 2009, Electrical conductivity of hydrous wadsleyite, Eur. J. Mineral., 21, 1615, 10.1127/0935-1221/2009/0021-1933
Samara, 1984, High-pressure studies of ionic conductivity in solids, vol. 38, 1
Shankland, 1990, Standard electrical conductivity of isotropic, homogeneous olivine in the temperature range 1100–1500°C, Geophys. J. Int., 103, 25, 10.1111/j.1365-246X.1990.tb01749.x
Simpson, 2002, Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable?, Earth Planet. Sci. Lett., 203, 535, 10.1016/S0012-821X(02)00862-2
Smyth, 2006, Olivine hydration in the deep upper mantle: effects of temperature and silica activity, Geophys. Res. Lett., 33, L15301, 10.1029/2006GL026194
Tarits, 2004, Water in the mantle: results from electrical conductivity beneath the French Alps, Geophys. Res. Lett., 31, L06612, 10.1029/2003GL019277
Wanamaker, 1993, Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene-buffered conditions and implications for defect equilibria, J. Geophys. Res., 98, 489, 10.1029/92JB01584
Wang, 2006, The effect of water on the electrical conductivity of olivine, Nature, 443, 977, 10.1038/nature05256
Xu, 2000, Pressure effect on electrical conductivity of mantle olivine, Phys. Earth Planet. Int., 118, 149, 10.1016/S0031-9201(99)00135-1
Yoshino, 2006, Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere, Nature, 443, 973, 10.1038/nature05223
Yoshino, 2008, Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite, Nature, 451, 326, 10.1038/nature06427