Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields

Journal of Mathematical Imaging and Vision - Tập 55 Số 1 - Trang 50-88 - 2016
Tony Lindeberg1
1Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)

Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. 123(3), 199–257 (1993)

Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 26–33 (1986)

Barbieri, D., Citti, G., Cocci, G., Sarti, A.: A cortical-inspired geometry for contour perception and motion integration. J. Math. Imaging Vis. 49(3), 511–529 (2014)

Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.O., Saupe, D., Voss, R.F.: The Science of Fractals. Springer, New York (1988)

Barnsley, M.F., Rising, H.: Fractals Everywhere. Academic Press, Boston (1993)

van der Berg, E.S., Reyneke, P.V., de Ridder, C.: Rotational image correlation in the Gauss-Laguerre domain. In: Third SPIE Conference on Sensors, MEMS and Electro-Optic Systems: Proc. of SPIE, vol. 9257, pp. 92,570F–1–92,570F–17 (2014)

den Brinker, A.C., Roufs, J.A.J.: Evidence for a generalized Laguerre transform of temporal events by the visual system. Biol. Cybern. 67(5), 395–402 (1992)

Cocci, C., Barbieri, D., Sarti, A.: Spatiotemporal receptive fields in V1 are optimally shaped for stimulus velocity estimation. J. Opt. Soc. Am. A 29(1), 130–138 (2012)

Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

DeAngelis, G.C., Anzai, A.: A modern view of the classical receptive field: linear and non-linear spatio-temporal processing by V1 neurons. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, vol. 1, pp. 704–719. MIT Press, Cambridge (2004)

DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive field dynamics in the central visual pathways. Trends Neurosci. 18(10), 451–457 (1995)

Duits, R., Burgeth, B.: Scale spaces on Lie groups. In: Gallari, F., Murli, A., Paragios, N. (eds.) Proceedings of International Conference on Scale-Space Theories and Variational Methods in Computer Vision (SSVM 2007), Lecture Notes in Computer Science, vol. 4485, pp. 300–312. Springer, Berlin (2007)

Duits, R., Felsberg, M., Florack, L., Platel, B.: $$\alpha $$ α -scale-spaces on a bounded domain. In: Griffin, L., Lillholm, M. (eds.) Proceedings of Scale-Space Methods in Computer Vision (Scale-Space’03). Lecture Notes in Computer Science, vol. 2695, pp. 494–510. Springer, Isle of Skye (2003)

Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 22, 267–298 (2004)

Fagerström, D.: Temporal scale-spaces. Int. J. Comput. Vis. 2–3, 97–106 (2005)

Fagerström, D.: Spatio-temporal scale-spaces. In: Gallari, F., Murli, A., Paragios, N. (eds.) Proceedings of International Conference on Scale-Space Theories and Variational Methods in Computer Vision (SSVM 2007). Lecture Notes in Computer Science, vol. 4485, pp. 326–337. Springer, Berlin (2007)

Faugeras, O., Toubol, J., Cessac, B.: A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 1 (2009). doi: 10.3389/neuro.10.001.2009

Felsberg, M., Sommer, G.: The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21, 5–26 (2004)

Fleet, D.J., Langley, K.: Recursive filters for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 61–67 (1995)

Florack, L.M.J.: Image Structure. Series in Mathematical Imaging and Vision. Springer, Berlin (1997)

Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Families of tuned scale-space kernels. In: Sandini, G. (ed.) Proceedings of European Conference on Computer Vision (ECCV’92). Lecture Notes in Computer Science, vol. 588, pp. 19–23. Springer, Santa Margherita Ligure (1992)

Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image Vis. Comput. 10(6), 376–388 (1992)

Fourtes, M.G.F., Hodgkin, A.L.: Changes in the time scale and sensitivity in the omatidia of limulus. J. Physiol. 172, 239–263 (1964)

Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

Guichard, F.: A morphological, affine, and Galilean invariant scale-space for movies. IEEE Trans. Image Process. 7(3), 444–456 (1998)

ter Haar Romeny, B. (ed.): Geometry-Driven Diffusion in Computer Vision. Series in Mathematical Imaging and Vision. Springer, Berlin (1994)

ter Haar Romeny, B., Florack, L., Nielsen, M.: Scale-time kernels and models. Proceedings of International Conference Scale-Space and Morphology in Computer Vision (Scale-Space’01). Lecture Notes in Computer Science. Springer, Vancouver (2001)

Heeger, D.J.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992)

Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)

Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 147, 226–238 (1959)

Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

Hubel, D.H., Wiesel, T.N.: Brain and Visual Perception: The Story of a 25-Year Collaboration. Oxford University Press, Oxford (2005)

Iijima, T.: Observation theory of two-dimensional visual patterns. Technical Report, Papers of Technical Group on Automata and Automatic Control, IECE, Japan (1962)

Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: International Conference on Computer Vision (ICCV’07), pp. 1–8 (2007)

Karlin, S.: Total Positivity. Stanford University Press, Stanford (1968)

Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)

Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

Koenderink, J.J.: Scale-time. Biol. Cybern. 58, 159–162 (1988)

Koenderink, J.J., van Doorn, A.J.: Receptive field families. Biol. Cybern. 63, 291–298 (1990)

Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. 14(6), 597–605 (1992)

Laptev, I., Caputo, B., Schuldt, C., Lindeberg, T.: Local velocity-adapted motion events for spatio-temporal recognition. Comput. Vis. Image Underst. 108, 207–229 (2007)

Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal recognition. Proceedings of ECCV’04 Workshop on Spatial Coherence for Visual Motion Analysis. Lecture Notes in Computer Science, pp. 91–103. Springer, Prague (2004)

Laptev, I., Lindeberg, T.: Velocity-adapted spatio-temporal receptive fields for direct recognition of activities. Image Vis. Comput. 22(2), 105–116 (2004)

Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12(3), 234–254 (1990)

Lindeberg, T.: Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction. J. Math. Imaging Vis. 3(4), 349–376 (1993)

Lindeberg, T.: Effective scale: a natural unit for measuring scale-space lifetime. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1068–1074 (1993)

Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer, Berlin (1993)

Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 225–270 (1994). http://www.csc.kth.se/~tony/abstracts/Lin94-SI-abstract.html

Lindeberg, T.: On the axiomatic foundations of linear scale-space. In: Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.) Gaussian Scale-Space Theory: Proceedings of PhD School on Scale-Space Theory, pp. 75–97. Springer, Copenhagen (1996)

Lindeberg, T.: Linear spatio-temporal scale-space. In: ter Haar Romeny, B.M., Florack, L.M.J., Koenderink, J.J., Viergever, M.A. (eds.) Scale-Space Theory in Computer Vision: Proceedings of First International Conference Scale-Space’97. Lecture Notes in Computer Science, vol. 1252, pp. 113–127. Springer, Utrecht (1997)

Lindeberg, T.: On automatic selection of temporal scales in time-casual scale-space. In: Sommer, G., Koenderink, J.J. (eds.) Proceedings of AFPAC’97: Algebraic Frames for the Perception-Action Cycle. Lecture Notes in Computer Science, vol. 1315, pp. 94–113. Springer, Kiel (1997)

Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 77–116 (1998)

Lindeberg, T.: Time-recursive velocity-adapted spatio-temporal scale-space filters. In: Johansen, P. (ed.) Proceedings of European Conference on Computer Vision (ECCV 2002). Lecture Notes in Computer Science, vol. 2350, pp. 52–67. Springer, Copenhagen (2002)

Lindeberg, T.: Scale-space. In: Wah, B. (ed.) Encyclopedia of Computer Science and Engineering, pp. 2495–2504. Wiley, Hoboken (2008)

Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40(1), 36–81 (2011)

Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107(6), 589–635 (2013)

Lindeberg, T.: Generalized axiomatic scale-space theory. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 178, pp. 1–96. Elsevier, Amsterdam (2013)

Lindeberg, T.: Invariance of visual operations at the level of receptive fields. PLOS One 8(7), e66,990 (2013)

Lindeberg, T.: Scale selection properties of generalized scale-space interest point detectors. J. Math. Imaging Vis. 46(2), 177–210 (2013)

Lindeberg, T.: Image matching using generalized scale-space interest points. J. Math. Imaging Vis. 52(1), 3–36 (2015)

Lindeberg, T.: Separable time-causal and time-recursive spatio-temporal receptive fields. Proceedings of Scale-Space and Variational Methods for Computer Vision (SSVM 2015). Lecture Notes in Computer Science, vol. 9087, pp. 90–102. Springer, Berlin (2015)

Lindeberg, T.: Time-causal and time-recursive spatio-temporal receptive fields. Tech. Rep. (2015). Preprint arXiv:1504.02648

Lindeberg, T., Akbarzadeh, A., Laptev, I.: Galilean-corrected spatio-temporal interest operators. In: International Conference on Pattern Recognition, Cambridge, pp. I:57–62 (2004)

Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale representations. In: Griffin, L., Lillholm, M. (eds.) Proceedings of Scale-Space Methods in Computer Vision (Scale-Space’03). Lecture Notes in Computer Science, vol. 2695, pp. 148–163. Springer, Isle of Skye (2003)

Lindeberg, T., Fagerström, D.: Scale-space with causal time direction. Proceedings of European Conference on Computer Vision (ECCV’96). Lecture Notes in Computer Science, vol. 1064, pp. 229–240. Springer, Cambridge (1996)

Lindeberg, T., Friberg, A.: Idealized computational models of auditory receptive fields. PLOS One 10(3), e0119,032:1–e0119,032:58 (2015)

Lindeberg, T., Friberg, A.: Scale-space theory for auditory signals. Proceedings of Scale-Space and Variational Methods for Computer Vision (SSVM 2015). Lecture Notes in Computer Science, vol. 9087, pp. 3–15. Springer, Berlin (2015)

Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure. Image Vis. Comput. 15, 415–434 (1997)

Mahmoudi, S.: Linear neural circuitry model for visual receptive fields. Tech. Rep. (2015). Preprint at http://eprints.soton.ac.uk/375838/

Mallat, S.G.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)

Mandelbrot, B.B.: The Fractal Geometry of Nature. W H Freeman and Co, San Francisco (1982)

Mattia, M., Guidice, P.D.: Population dynamics of interacting spiking neurons. Phys. Rev. E 66(5), 051,917 (2002)

Miao, X., Rao, R.P.N.: Learning the Lie group of visual invariance. Neural Comput. 19, 2665–2693 (2007)

Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M. (eds.): Wavelets and Their Applications. ISTE Ltd., London (2007)

Omurtag, A., Knight, B.W., Sirovich, L.: On the simulation of large populations of neurons. J. Comput. Neurosci. 8, 51–63 (2000)

Pauwels, E.J., Fiddelaers, P., Moons, T., van Gool, L.J.: An extended class of scale-invariant and recursive scale-space filters. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 691–701 (1995)

Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. Image Vis. Comput. 10, 663–672 (1992)

Rivero-Moreno, C.J., Bres, S.: Spatio-temporal primitive extraction using Hermite and Laguerre filters for early vision video indexing. In: Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 3211, pp. 825–832. Springer (2004)

Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999)

Schoenberg, I.J.: Über Variationsvermindernde Lineare Transformationen. Mathematische Zeitschrift 32, 321–328 (1930)

Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4, 45–99 (1946)

Schoenberg, I.J.: On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pòlya-Schur type. Proc. Natl. Acad. Sci. 33, 11–17 (1947)

Schoenberg, I.J.: Some analytical aspects of the problem of smoothing. Courant Anniversary Volume, Studies and Essays, pp. 351–370. Interscience, New York (1948)

Schoenberg, I.J.: On Pòlya frequency functions. ii. Variation-diminishing integral operators of the convolution type. Acta Sci. Math. 12, 97–106 (1950)

Schoenberg, I.J.: On smoothing operations and their generating functions. Bull. Am. Math. Soc. 59, 199–230 (1953)

Schoenberg, I.J.: I. J. Schoenberg Selected Papers, vol. 2. Springer, Berlin (1988). Edited by C. de Boor

Shabani, A.H., Clausi, D.A., Zelek, J.S.: Improved spatio-temporal salient feature detection for action recognition. In: British Machine Vision Conference (BMVC’11), pp. 1–12. Dundee, UK (2011)

Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multi-scale transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)

Tschirsich, M., Kuijper, A.: Notes on discrete Gaussian scale space. J. Math. Imaging Vis. 51, 106–123 (2015)

Sharma, U., Duits, R.: Left-invariant evolutions of wavelet transforms on the similitude group. Appl. Comput. Harmon. Anal. 39(1), 110–137 (2014)

Valois, R.L.D., Cottaris, N.P., Mahon, L.E., Elfer, S.D., Wilson, J.A.: Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vis. Res. 40(2), 3685–3702 (2000)

Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)

Weickert, J., Ishikawa, S., Imiya, A.: On the history of Gaussian scale-space axiomatics. In: Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.) Gaussian Scale-Space Theory: Proceedings of PhD School on Scale-Space Theory, pp. 45–59. Springer, Copenhagen (1997)

Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)

Willems, G., Tuytelaars, T., van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. Proceedings of European Conference on Computer Vision (ECCV 2008). Lecture Notes in Computer Science, vol. 5303, pp. 650–663. Springer, Marseille (2008)

Witkin, A.P.: Scale-space filtering. In: Proceedings of 8th International Joint Conference Artificial Intelligence, pp. 1019–1022. Karlsruhe, Germany (1983)

Yuille, A.L., Poggio, T.A.: Scaling theorems for zero-crossings. IEEE Trans. Pattern Anal. Mach. Intell. 8, 15–25 (1986)

Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: Proceedings of Computer Vision and Pattern Recognition, pp. II:123–130. Kauai Marriott, Hawaii (2001)