Performance of different structured surfaces in nucleate pool boiling

Applied Thermal Engineering - Tập 29 - Trang 3643-3653 - 2009
A.K. Das1, P.K. Das1, P. Saha2
1Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur-721 302, India
2Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721 302, India

Tài liệu tham khảo

Bergles, 1997, Enhancement of pool boiling, Int. J. Refrig., 20, 545, 10.1016/S0140-7007(97)00063-7 Bergles, 1997, Heat transfer enhancement – the encouragement and accommodation of high heat flux, J. Heat Transfer, 119, 8, 10.1115/1.2824105 Thome, 1992 A.E. Bergles, High-flux processes through enhanced heat transfer, in: Rohsenow Symposium on Future Trends in Heat Transfer, Massachusetts, Cambridge, 2003. Webb, 2004, Odyssey of the enhanced boiling surface, J. Heat Transfer, 126, 1051, 10.1115/1.1834615 Webb, 1981, The evolution of enhanced surface geometries for nucleate boiling, Heat Transfer Eng., 2, 46, 10.1080/01457638108962760 Jacob, 1931, Versuche uber den verdampfungsvorgang, Forschung auf dem Gebiete des Ingenieurwesens, 2, 435, 10.1007/BF02578808 J. Fujikaka, Heat Transfer Tube for Use in Boiling Type Heat Exchangers and Method of Producing the Same, US Patent 216, 1980, p. 826. Wen, 2003, Pool boiling heat transfer of deionized and degassed water in vertical/horizontal V-shaped geometries, Heat Mass Transfer, 39, 729, 10.1007/s00231-002-0358-z Chao, 2004, Nucleate pool boiling on copper–graphite composite surfaces and its enhance mechanism, J. Thermophys. Heat Transfer, 18, 236, 10.2514/1.1103 Yang, 1992, Mechanisms of nucleate pool boiling on composite surfaces, Int. Commun. Heat Mass Transfer, 19, 781, 10.1016/0735-1933(92)90014-9 Kim, 2002, Mechanism of nucleate boiling heat transfer enhancement from microporous surface in saturated FC 72, Trans. ASME J. Heat Transfer, 124, 501, 10.1115/1.1469548 Chang, 1997, Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72, Int. J. Heat Mass Transfer, 40, 4437, 10.1016/S0017-9310(97)00055-0 Lienhard, 2004 Hwang, 1981, Boiling heat transfer of silicon integrated circuits chip mounted on a substrate, ASME HTD, 20, 53 J. Arshad, J.R. Thome, Enhanced boiling surfaces: heat transfer mechanism mixture boiling, in: Y. Mori, W. Yang (Eds.), Proc. ASME–JSME Therm. Eng. Joint Conf. Honolulu, Hawaii, vol. 1, 1983, pp. 191–197. Nakayama, 1980, Dynamic model of enhanced boiling heat transfer on porous surfaces – Part I. Experimental investigation, ASME J. Heat Transfer, 102, 445, 10.1115/1.3244320 M.D. Xin, Y.D. Chao, Analysis and experiment of boiling heat transfer on T-shaped finned surfaces, in: Proceedings of the 23rd National Heat Transfer Conference, Denver, Colorado, USA, 1985. Nakayama, 1980, Dynamic model of enhanced boiling heat transfer on porous surfaces – Part II. Analytical model, ASME J. Heat Transfer, 102, 451, 10.1115/1.3244321 Chien, 1998, A nucleate boiling model for structured enhanced surfaces, Int. J. Heat Mass Transfer, 41, 2183, 10.1016/S0017-9310(97)00302-5 Ramaswamy, 2003, Semi-analytical model for boiling from enhanced structures, Int. J. Heat Mass Transfer, 46, 4257, 10.1016/S0017-9310(03)00216-3 Murthy, 2006, Enhanced boiling heat transfer simulation from structured surfaces: semi-analytical model, Int. J. Heat Mass Transfer, 49, 1885, 10.1016/j.ijheatmasstransfer.2005.10.035 Das, 2007, Nucleate boiling heat transfer from a structured surface-effect of liquid intake, Int. J. Heat Mass Transfer, 50, 1577, 10.1016/j.ijheatmasstransfer.2006.08.030 Kulenovic, 2002, High speed visualization of pool boiling from structured tubular heat transfer surfaces, Exp. Therm. Fluid Sci., 25, 547, 10.1016/S0894-1777(01)00113-3 Kim, 2001, Nucleate pool boiling on structured enhanced tubes having pores with connecting gaps, Int. J. Heat Mass Transfer, 44, 17, 10.1016/S0017-9310(00)00096-X Chien, 1998, Visualization of pool boiling on enhanced surfaces, Exp. Therm. Fluid Sci., 16, 332, 10.1016/S0894-1777(97)10032-2 Rajalu, 2004, Enhancement of nucleate pool boiling heat transfer by reentrant cavity horizontal tubes, Int. J. Heat Exchangers, 5, 301 Das, 2007, Nucleate boiling of water from plain and structured surfaces, Exp. Therm. Fluid Sci., 31, 967, 10.1016/j.expthermflusci.2006.10.006 Rohsenow, 1952, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 74, 969 Moffat, 1988, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X K. Nishikawa, Y. Fujita, S. Uchida, H. Ohta, Effect of heating surface orientation on nucleate boiling heat transfer, in: Proceeding of ASME-JSME Thermal Engineering Joint Conference, vol. 1, 1983, pp. 129-136. Howard, 1999, Orientation effects on pool boiling critical heat flux (CHF) and modeling of CHF for near-vertical surfaces, Int. J. Heat Mass Transfer, 42, 1665, 10.1016/S0017-9310(98)00233-6 Kim, 2003, One dimensional critical heat flux concerning surface orientation and gap size effects, Nucl. Eng. Des., 226, 277, 10.1016/j.nucengdes.2003.07.003 Nishikawa, 1990, Nucleate boiling heat transfer and its augmentation, Adv. Heat Transfer, 20, 1, 10.1016/S0065-2717(08)70025-X Gou, 1992, An experimental study of saturated pool boiling from downward facing and inclined surfaces, Int. J. Heat Mass Transfer, 35, 2109, 10.1016/0017-9310(92)90056-X