NaClO-induced sodium-doped cyano-rich graphitic carbon nitride nanosheets with nitrogen vacancies to boost photocatalytic hydrogen peroxide production
Tài liệu tham khảo
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Verma, 2021, Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel, Nat. Commun., 12, 7313, 10.1038/s41467-021-27457-4
Sun, 2020, A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production, Chem. Soc. Rev., 49, 6605, 10.1039/D0CS00458H
Xu, 2019, Nanostructured materials for photocatalysis, Chem. Soc. Rev., 48, 3868, 10.1039/C9CS00102F
Sun, 2018, Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts, ACS Catal., 8, 2844, 10.1021/acscatal.7b03464
Yang, 2018, Toward the decentralized electrochemical production of H2O2: a focus on the catalysis, ACS Catal., 8, 4064, 10.1021/acscatal.8b00217
Hirakawa, 2016, Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light, ACS Catal., 6, 4976, 10.1021/acscatal.6b01187
Baran, 2019, Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2, Appl. Catal. B: Environ., 244, 303, 10.1016/j.apcatb.2018.11.044
Thakur, 2017, Sunlight-driven sustainable production of hydrogen peroxide using a CdS–graphene hybrid photocatalyst, J. Catal., 345, 78, 10.1016/j.jcat.2016.10.028
Sheng, 2019, Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst, Chem. Eng. J., 370, 287, 10.1016/j.cej.2019.03.197
Lei, 2019, Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light, ACS Sustainable Chem. Eng., 7, 16467, 10.1021/acssuschemeng.9b03678
Lin, 2019, Crystalline carbon nitride semiconductors for photocatalytic water splitting, Angew. Chem. Int. Ed., 58, 6164, 10.1002/anie.201809897
Li, 2020, Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity, ACS Nano, 14, 10552, 10.1021/acsnano.0c04544
Cao, 2018, Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation, Chem. Eng. J., 353, 147, 10.1016/j.cej.2018.07.116
Zhao, 2022, Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction, Chem. Eng. J., 430, 10.1016/j.cej.2021.132682
Liu, 2022, Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction, Appl. Catal. B: Environ., 302, 10.1016/j.apcatb.2021.120845
Chu, 2022, Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4, Chem. Eng. J., 428, 10.1016/j.cej.2021.132531
Wu, 2020, Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering, ACS Catal., 10, 14380, 10.1021/acscatal.0c03359
Chen, 2021, Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride, Adv. Funct. Mater., 31, 2105731, 10.1002/adfm.202105731
Zhao, 2021, Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production, Mater. Today Energy, 24
Fattahimoghaddam, 2021, Enhancement in photocatalytic H2O2 Production over g-C3N4 nanostructures: a collaborative approach of nitrogen deficiency and supramolecular precursors, ACS Sustainable Chem. Eng., 9, 4520, 10.1021/acssuschemeng.0c08884
Shi, 2018, Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production, Small, 14, 1703142, 10.1002/smll.201703142
Qu, 2018, The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment, Diam. Relat. Mater., 86, 159, 10.1016/j.diamond.2018.04.027
Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B Condens, 49, 14251, 10.1103/PhysRevB.49.14251
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens, 54, 11169, 10.1103/PhysRevB.54.11169
Blochl, 1994, Projector augmented-wave method, Phys. Rev. B Condens, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Hammer, 1999, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 59, 7413, 10.1103/PhysRevB.59.7413
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Cui, 2018, Constructing ultrathin g-C3N4 nanosheets with hierarchical pores by NaClO induced wet etching for efficient photocatalytic Cr(VI) detoxification under visible light irradiation, Diam. Relat. Mater., 88, 51, 10.1016/j.diamond.2018.06.016
Tian, 2020, KOH-assisted band engineering of polymeric carbon nitride for visible light photocatalytic oxygen reduction to hydrogen peroxide, ACS Sustainable Chem. Eng., 8, 594, 10.1021/acssuschemeng.9b06134
Yang, 2019, Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production, Appl. Catal. B: Environ., 240, 64, 10.1016/j.apcatb.2018.08.072
Che, 2021, Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production, Angew. Chem. Int. Ed., 60, 25546, 10.1002/anie.202111769
Cao, 2017, Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production, J. Power Sources, 351, 151, 10.1016/j.jpowsour.2017.03.089
Zhu, 2018, Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2, Appl. Catal. B: Environ., 232, 19, 10.1016/j.apcatb.2018.03.035
Wang, 2018, Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts, J. Energy Chem., 27, 343, 10.1016/j.jechem.2017.12.014
Wang, 2018, A green and facile method to prepare graphitic carbon nitride nanosheets with outstanding photocatalytic H2O2 production ability via NaClO hydrothermal treatment, New J. Chem., 42, 18335, 10.1039/C8NJ03044H
López-Vásquez, 2019, Photocatalytic hydrogen production by strontium titanate-based perovskite doped europium (Sr0.97Eu0.02Zr0.1Ti0.9O3), Environ. Sci. Pollut. Res., 26, 4202, 10.1007/s11356-018-3116-6
Li, 2011, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation, J. Mol. Catal. A Chem., 334, 116, 10.1016/j.molcata.2010.11.005
Manring, 1984, Interception of O2− by benzoquinone in cyanoaromatic-sensitized photooxygenations, Tetrahedron Lett., 25, 2523, 10.1016/S0040-4039(01)81221-1
Sun, 2018, Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production, ChemSusChem, 11, 3388, 10.1002/cssc.201801583