Fractional Schrödinger dynamics and decoherence
Tài liệu tham khảo
Gaididei, 1997, Effects of nonlocal dispersive interactions on self-trapping excitations, Phys. Rev. E, 55, 6141, 10.1103/PhysRevE.55.6141
Laskin, 2002, Fractional Schrödinger equation, Phys. Rev. E, 66, 10.1103/PhysRevE.66.056108
Zoia, 2007, Fractional Laplacian in bounded domains, Phys. Rev. E, 76, 10.1103/PhysRevE.76.021116
Michelitsch, 2013, The fractional Laplacian as a limiting case of a self-similar spring model and application to n-dimensional anomalous diffusion, Fract. Calc. Appl. Anal., 16, 827, 10.2478/s13540-013-0052-5
Mingaleev, 1999, Models for energy and charge transport and storage in biomolecules, J. Biol. Phys., 25, 41, 10.1023/A:1005152704984
Fröhlich, 2007, Boson stars as solitary waves, Comm. Math. Phys., 274, 1, 10.1007/s00220-007-0272-9
Lenzmann, 2007, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10, 43, 10.1007/s11040-007-9020-9
Kirkpatrick, 2013, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317, 563, 10.1007/s00220-012-1621-x
Secchi, 2014, Soliton dynamics for fractional Schrödinger equations, Appl. Anal., 93, 1702, 10.1080/00036811.2013.844793
Hu, 2000, Schrödinger equations with fractional Laplacians, Appl. Math. Optim., 42, 281, 10.1007/s002450010014
Samko, 1993
Oldham, 2006
Pitaevskii, 2003
Bao, 2006, Dynamics of rotating Bose–Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66, 758, 10.1137/050629392
Zhang, 2007, Dynamics of the center of mass in rotating Bose–Einstein condensates, Appl. Numer. Math., 57, 697, 10.1016/j.apnum.2006.07.011
Frank, 2013, On the uniqueness and nondegeneracy of ground states of (−Δ)sQ+Q−Qα+1=0 in R, Acta Math., 210, 261, 10.1007/s11511-013-0095-9
Frank, 2015, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math.
Guo, 2013, Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation, Fract. Calc. Appl. Anal., 16, 226, 10.2478/s13540-013-0014-y
Guo
Cho, 2015, On the finite time blowup for mass-critical Hartree equations, Proc. Roy. Soc. Edinburgh Sect. A, 145, 467, 10.1017/S030821051300142X
Smith, 1991, 108
Fröhlich, 2004, Dynamics of solitary waves in an external potential, Comm. Math. Phys., 250, 613, 10.1007/s00220-004-1128-1
Benci, 2010, The nonlinear Schrödinger equation: Soliton dynamics, J. Differential Equations, 249, 3312, 10.1016/j.jde.2010.09.026
Bronski, 2000, Soliton dynamics in a potential, Math. Res. Lett., 7, 329, 10.4310/MRL.2000.v7.n3.a7
García-Ripoll, 2001, Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations, Phys. Rev. E, 64, 10.1103/PhysRevE.64.056602
Zhang, 2010, Numerical study of vortex interactions in Bose–Einstein condensation, Commun. Comput. Phys., 8, 327, 10.4208/cicp.2009.09.104
Caliari, 2010, Numerical computation of soliton dynamics for NLS equations in a driving potential, Electron. J. Differential Equations, 89, 1
Ervin, 2007, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equations, SIAM J. Numer. Anal., 45, 572, 10.1137/050642757
Meerschaert, 2006, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 249, 10.1016/j.jcp.2005.05.017
Roop, 2006, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2, J. Comput. Appl. Math., 193, 243, 10.1016/j.cam.2005.06.005
Cordoba, 2008, A note on the interface dynamics for convection in porous media, Physica D, 237, 1488, 10.1016/j.physd.2008.03.042
Berselli, 2014, Local solvability and turning for the inhomogeneous Muskat problem, Interfaces Free Bound., 16, 175, 10.4171/IFB/317
Granero-Belinchón, 2014, An aggregation equation with a nonlocal flux, Nonlinear Anal.-Theor., 108, 260, 10.1016/j.na.2014.05.018
Bueno-Orovio, 2014, Fourier spectral methods for fractional-in-space reaction–diffusion equations, BIT, 54, 937, 10.1007/s10543-014-0484-2
Amore, 2010, Collocation method for fractional quantum mechanics, J. Math. Phys., 51, 10.1063/1.3511330
Cai, 2001, Dispersive wave turbulence in one dimension, Physica D, 152–153, 551, 10.1016/S0167-2789(01)00193-2
Majda, 1997, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 6, 9, 10.1007/BF02679124
Zakharov, 2001, Wave turbulence in one-dimensional models, Physica D, 152–153, 573, 10.1016/S0167-2789(01)00194-4
Du, 2012, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 667, 10.1137/110833294
Duo, 2015, Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys., 18, 321, 10.4208/cicp.300414.120215a
Cordoba, 2007, Analytical behavior of 2D incompressible flow in porous media, J. Math. Phys., 48, 10.1063/1.2404593
Granero-Belinchón, 2015, On a nonlocal analog of the Kuramoto–Sivashinsky equation, Nonlinearity, 28, 1103, 10.1088/0951-7715/28/4/1103
Duo, 2016, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71, 2257, 10.1016/j.camwa.2015.12.042
Strang, 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506, 10.1137/0705041
Marchuk, 1990, Splitting and alternating direction methods, 10.1016/S1570-8659(05)80035-3
K. Kirkpatrick, Y. Zhang, Ground states of fractional Schrödinger equation, preprint.
Bao, 2013, A simple and efficient numerical method for computing the dynamics of rotating Bose–Einstein condensates via a rotating Lagrangian coordinate, SIAM J. Sci. Comput., 35, A2671, 10.1137/130911111
Sulem, 1999
Zaslavsky, 2007, Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos, Chaos, 17, 10.1063/1.2819537
Korabel, 2007, Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction, Physica A, 378, 223, 10.1016/j.physa.2006.10.041
Tarasov, 2006, Continuous limit of discrete systems with long-range interaction, J. Phys. A: Math. Gen., 39, 14895, 10.1088/0305-4470/39/48/005