Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector
Tóm tắt
Từ khóa
Tài liệu tham khảo
Miller JE. Review of water resources and desalination techniques. Sand Rep. 2003. https://doi.org/10.2172/809106 .
Jiang J, Tian H, Cui M, Liu L. Proof-of-concept study of an integrated solar desalination system. Renew Energy. 2009;34:2798–802.
Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712–7.
Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci. 2005;31:242–81.
Narayan GP, Sharqawy MH, Summers EK, Lienhard JH, Zubair SM, Antar MA. The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renew Sustain Energy Rev. 2010;14:1187–201.
Chehayeb KM, Narayan GP, Zubair SM. V JHL. Use of multiple extractions and injections to thermodynamically balance the humidification dehumidification desalination system. Int J Heat Mass Transf. 2014;68:422–34.
Al-Sahali M, Ettouney HM. Humidification dehumidification desalination process: design and performance evaluation. Chem Eng J. 2008;143:257–64.
Narayan GP, Sharqawy MH, Lienhard VJH, Zubair SM. Thermodynamic analysis of humidification dehumidification desalination cycles. Desalin Water Treat. 2010;16:339–53.
Amer EH, Kotb H, Mostafa GH, El-Ghalban AR. Theoretical and experimental investigation of humidification–dehumidification desalination unit. Desalination. 2009;249:949–59.
Sharqawy MH, Antar MA, Zubair SM, Elbashir AM. Optimum thermal design of humidification dehumidification desalination systems. Desalination. 2014;349:10–21.
Zubair MI, Al-Sulaiman FA, Antar MA, Al-Dini SA, Ibrahim NI. Performance and cost assessment of solar driven humidification dehumidification desalination system. Energy Convers Manag. 2017;132:28–39.
Hermosillo JJ, Arancibia-Bulnes CA, Estrada CA. Water desalination by air humidification: mathematical model and experimental study. Sol Energy. 2012;86:1070–6.
Yildirim C, Solmuş I. A parametric study on a humidificationvdehumidification (HDH) desalination unit powered by solar air and water heaters. Energy Convers Manag. 2014;86:568–75.
Bhalla V, Tyagi H. Solar energy harvesting by cobalt oxide nanoparticles, a nanofluid absorption based system. Sustain Energy Technol Assess. 2017;24:45–54.
Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J Sol Energy Eng. 2009;131:041004.
Khullar V, Tyagi H, Hordy N, Otanicar TP, Hewakuruppu Y, Modi P, et al. Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. Int J Heat Mass Transf. 2014;77:377–84.
Bhalla V, Tyagi H. Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: a review on optical properties. Renew Sustain Energy Rev. 2018;84:12–42.
Jeon J, Park S, Lee BJ. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Sol Energy. 2016;132:247–56.
Lenert A, Wang EN. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy. 2012;86:253–65.
Kabeel AE, El-Said EMS. Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector. Desalination. 2014;333:10–22.
El-said EMS, Kabeel AE, Abdulaziz M. Theoretical study on hybrid desalination system coupled with nano-fluid solar heater for arid states. Desalination. 2016;386:84–98.
Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.
Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118:536–45.
Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131:2027–39.
Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9 .
Rashidi S, Rahbar N, Valipour MS, Esfahani JA. Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis. Appl Therm Eng. 2018;130:1341–8.
Rashidi S, Abolfazli Esfahani J, Rahbar N. Partitioning of solar still for performance recovery: experimental and numerical investigations with cost analysis. Sol Energy. 2017;153:41–50.
Rashidi S, Bovand M, Esfahani JA. Optimization of partitioning inside a single slope solar still for performance improvement. Desalination. 2016;395:79–91.
Rashidi S, Esfahani JA. Spatial entropy generation analysis for the design improvement of a single slope solar still. Environ Prog Sustain Energy. 2018;37:1112–20.
Rashidi S, Bovand M, Esfahani JA. Volume-of-fluid model for simulating vapor–liquid phase change in a solar still. J Thermophys Heat Trans. 2018. https://doi.org/10.2514/1.T5316 .
Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett. 2011;6:225.
Gorji TB, Ranjbar AA. A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol Energy. 2016;135:493–505.
Garg K, Khullar V, Das SK, Tyagi H (2018) IMECE2018-87318. In: ASME 2018 international mechanical engineering congress and exposition IMECE2018 November 9–15, 2018, Pittsburgh, PA (under Rev.
Khullar V, Tyagi H, Phelan PE, Otanicar TP, Singh H, Taylor RA. Solar energy harvesting using nanofluids-based concentrating solar collector. J Nanotechnol Eng Med. 2013;3:1–9.
Garg K, Khullar V, Das SK, Tyagi H. Performance evaluation of a brine-recirculation multistage flash desalination system coupled with nanofluid-based direct absorption solar collector. Renew Energy. 2018;122:140–51.
Cengel YA, Ghajar AJ. Heat and mass transfer: a practical approach. 4th ed. New York City: McGraw-Hill Education; 2007.
Khullar V, Tyagi H, Otanicar TP, Hewakuruppu YL, Taylor RA. Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy. ASME J Heat Transf. 2016;140(6):062702. https://doi.org/10.1115/1.4039214
Otanicar T, Phelan PE, Prasher RS, Rosengarten G, Taylor RA. Nanofluid-based direct absorption solar collector. J Renew Sustain Energy. 2010;2:033102.
Ettouney H. Design and analysis of humidification dehumidification desalination process. Desalination. 2005;183:341–52.
Miller JA, Lienhard VJH. Impact of extraction on a humidification–dehumidification desalination system. Desalination. 2013;313:87–96.
Narayan GP, Lienhard VJH, Zubair SM. Entropy generation minimization of combined heat and mass transfer devices. Int J Therm Sci. 2010;49:2057–66.
Taylor RA, Phelan PE, Otanicar TP, Walker CA, Nguyen M, Trimble S, et al. Applicability of nanofluids in high flux solar collectors. J Renew Sustain Energy. 2011;3:1–15.
Khullar V, Bhalla V, Tyagi H. Potential heat transfer fluids (nanofluids) for direct volumetric absorption-based solar thermal systems. J Therm Sci Eng Appl. 2017;10:011009.
Palik ED. Handbook of optical constants of solids, five-volume set: handbook of thermo-optic coefficients of optical materials with applications. New York City: Elsevier Science; 1997.
Gupta B, Kumar A, Baredar PV. Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment. Front Mater. 2017;4:1–7.