Naseri, 2017, J. Mater. Chem. A, 5, 23406, 10.1039/C7TA05131J
Li, 2017, Appl. Catal. B-Environ., 203, 408, 10.1016/j.apcatb.2016.10.049
Xing, 2017, Adv. Funct. Mater., 27, 1702624, 10.1002/adfm.201702624
Bai, 2018, ChemCatChem, 10, 2107, 10.1002/cctc.201701998
Liang, 2019, Appl. Catal. B-Environ., 243, 711, 10.1016/j.apcatb.2018.11.017
Zhang, 2017, Appl. Catal. B-Environ., 202, 620, 10.1016/j.apcatb.2016.09.068
Yu, 2015, Nano Energy, 11, 19, 10.1016/j.nanoen.2014.09.024
Low, 2017, Appl. Surf. Sci., 15, 658, 10.1016/j.apsusc.2016.09.093
Gao, 2018, J. Mater. Chem. A., 6, 18979, 10.1039/C8TA06029K
Si, 2018, Nanoscale, 10, 2596, 10.1039/C7NR07336D
Cai, 2019, Adv. Mater. Interfaces, 17, 1900775, 10.1002/admi.201900775
Kamegawa, 2013, Angew. Chem. Int. Ed., 52, 916, 10.1002/anie.201206839
Yang, 2014, Int. J. Hydrogen Energy, 39, 18976, 10.1016/j.ijhydene.2014.09.123
He, 2016, J. Mater. Chem. C, 4, 11143, 10.1039/C6TC03917K
Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138
Lei, 2015, Front. Phys., 10, 276, 10.1007/s11467-015-0493-x
Xie, 2016, Nano Energy, 26, 513, 10.1016/j.nanoen.2016.06.005
Luo, 2017, ACS Nano, 11, 2459, 10.1021/acsnano.6b07668
Chang, 2015, Adv. Energy. Mater., 5, 1402279, 10.1002/aenm.201402279
Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685
Guo, 2018, Adv. Optical Mater., 7, 1801403, 10.1002/adom.201801403
Bai, 2018, Nano Energy, 53, 296, 10.1016/j.nanoen.2018.08.058
Liu, 2018, Small Methods, 2, 1800040, 10.1002/smtd.201800040
Li, 2018, Appl. Mater. Today, 13, 217, 10.1016/j.apmt.2018.09.004
Li, 2019, Appl. Catal. B-Environ., 246, 12, 10.1016/j.apcatb.2019.01.051
Cai, 2015, J. Am. Chem. Soc., 137, 2622, 10.1021/ja5120908
Liu, 2015, J. Mol. Catal. A-Chem., 396, 136, 10.1016/j.molcata.2014.10.002
Li, 2018, Angew. Chem. Int. Ed., 57, 491, 10.1002/anie.201708709
Li, 2018, Appl. Catal. B-Environ., 234, 167, 10.1016/j.apcatb.2018.04.016
Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Hu, 2017, Sol. Energy Mat. Sol. C, 172, 108, 10.1016/j.solmat.2017.07.027
Li, 2019, J. Colloid. Interf. Sci., 537, 206, 10.1016/j.jcis.2018.11.013
Li, 2019, ACS Nano, 13, 5533, 10.1021/acsnano.9b00383
Xue, 2017, ACS Appl. Mater. Interfaces, 9, 41559, 10.1021/acsami.7b13370
Peng, 2016, ACS Appl. Mater. Interfaces, 8, 6051, 10.1021/acsami.5b11973
Rakhi, 2015, Chem. Mater., 27, 5314, 10.1021/acs.chemmater.5b01623
Li, 2014, Appl. Catal. B-Environ., 147, 958, 10.1016/j.apcatb.2013.10.027
Geng, 2016, Nat. Commun., 7, 10672, 10.1038/ncomms10672
Peng, 2018, Nano Energy, 53, 97, 10.1016/j.nanoen.2018.08.040
Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s
Sun, 2019, Sol. Energy Mat. Sol. C, 195, 309, 10.1016/j.solmat.2019.03.030
Hu, 2019, Appl. Catal. B-Environ., 241, 329, 10.1016/j.apcatb.2018.09.051
Qiu, 2017, Appl. Catal. B-Environ., 206, 319, 10.1016/j.apcatb.2017.01.058
Schvartzman, 2001, Semicond. Sci. Tech., 16, L68, 10.1088/0268-1242/16/10/103
Wang, 2011, Appl. Phys. Lett., 99
Liu, 2014, Nano Energy, 7, 25, 10.1016/j.nanoen.2014.04.018
Yao, 2018, J. Power Sources, 374, 142, 10.1016/j.jpowsour.2017.11.028
Pan, 2013, Nanoscale, 5, 3601, 10.1039/c3nr00476g
Kong, 2011, J. Am. Chem. Soc., 133, 16414, 10.1021/ja207826q
Jin, 2018, Appl. Catal. B: Environ., 226, 53, 10.1016/j.apcatb.2017.12.008
Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105
Manikandan, 2018, J. Mater. Chem. A, 6, 15320, 10.1039/C8TA02496K