Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2

Chemical Engineering Journal - Tập 383 - Trang 123178 - 2020
Yujie Li1, Lei Ding1, Zhangqian Liang1, Yanjun Xue1, Hongzhi Cui1, Jian Tian1
1School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Naseri, 2017, J. Mater. Chem. A, 5, 23406, 10.1039/C7TA05131J

Li, 2017, Appl. Catal. B-Environ., 203, 408, 10.1016/j.apcatb.2016.10.049

Xing, 2017, Adv. Funct. Mater., 27, 1702624, 10.1002/adfm.201702624

Bai, 2018, ChemCatChem, 10, 2107, 10.1002/cctc.201701998

Liang, 2019, Appl. Catal. B-Environ., 243, 711, 10.1016/j.apcatb.2018.11.017

Zhang, 2017, Appl. Catal. B-Environ., 202, 620, 10.1016/j.apcatb.2016.09.068

Yu, 2015, Nano Energy, 11, 19, 10.1016/j.nanoen.2014.09.024

Low, 2017, Appl. Surf. Sci., 15, 658, 10.1016/j.apsusc.2016.09.093

Gao, 2018, J. Mater. Chem. A., 6, 18979, 10.1039/C8TA06029K

Si, 2018, Nanoscale, 10, 2596, 10.1039/C7NR07336D

Cai, 2019, Adv. Mater. Interfaces, 17, 1900775, 10.1002/admi.201900775

Kamegawa, 2013, Angew. Chem. Int. Ed., 52, 916, 10.1002/anie.201206839

Yang, 2014, Int. J. Hydrogen Energy, 39, 18976, 10.1016/j.ijhydene.2014.09.123

He, 2016, J. Mater. Chem. C, 4, 11143, 10.1039/C6TC03917K

Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138

Lei, 2015, Front. Phys., 10, 276, 10.1007/s11467-015-0493-x

Xie, 2016, Nano Energy, 26, 513, 10.1016/j.nanoen.2016.06.005

Luo, 2017, ACS Nano, 11, 2459, 10.1021/acsnano.6b07668

Chang, 2015, Adv. Energy. Mater., 5, 1402279, 10.1002/aenm.201402279

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Guo, 2018, Adv. Optical Mater., 7, 1801403, 10.1002/adom.201801403

Bai, 2018, Nano Energy, 53, 296, 10.1016/j.nanoen.2018.08.058

Liu, 2018, Small Methods, 2, 1800040, 10.1002/smtd.201800040

Li, 2018, Appl. Mater. Today, 13, 217, 10.1016/j.apmt.2018.09.004

Li, 2019, Appl. Catal. B-Environ., 246, 12, 10.1016/j.apcatb.2019.01.051

Cai, 2015, J. Am. Chem. Soc., 137, 2622, 10.1021/ja5120908

Liu, 2015, J. Mol. Catal. A-Chem., 396, 136, 10.1016/j.molcata.2014.10.002

Li, 2018, Angew. Chem. Int. Ed., 57, 491, 10.1002/anie.201708709

Li, 2018, Appl. Catal. B-Environ., 234, 167, 10.1016/j.apcatb.2018.04.016

Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306

Hu, 2017, Sol. Energy Mat. Sol. C, 172, 108, 10.1016/j.solmat.2017.07.027

Li, 2019, J. Colloid. Interf. Sci., 537, 206, 10.1016/j.jcis.2018.11.013

Li, 2019, ACS Nano, 13, 5533, 10.1021/acsnano.9b00383

Xue, 2017, ACS Appl. Mater. Interfaces, 9, 41559, 10.1021/acsami.7b13370

Peng, 2016, ACS Appl. Mater. Interfaces, 8, 6051, 10.1021/acsami.5b11973

Rakhi, 2015, Chem. Mater., 27, 5314, 10.1021/acs.chemmater.5b01623

Li, 2014, Appl. Catal. B-Environ., 147, 958, 10.1016/j.apcatb.2013.10.027

Geng, 2016, Nat. Commun., 7, 10672, 10.1038/ncomms10672

Peng, 2018, Nano Energy, 53, 97, 10.1016/j.nanoen.2018.08.040

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Sun, 2019, Sol. Energy Mat. Sol. C, 195, 309, 10.1016/j.solmat.2019.03.030

Hu, 2019, Appl. Catal. B-Environ., 241, 329, 10.1016/j.apcatb.2018.09.051

Qiu, 2017, Appl. Catal. B-Environ., 206, 319, 10.1016/j.apcatb.2017.01.058

Schvartzman, 2001, Semicond. Sci. Tech., 16, L68, 10.1088/0268-1242/16/10/103

Wei, 2014, AIP Adv., 4

Wang, 2011, Appl. Phys. Lett., 99

Liu, 2014, Nano Energy, 7, 25, 10.1016/j.nanoen.2014.04.018

Yao, 2018, J. Power Sources, 374, 142, 10.1016/j.jpowsour.2017.11.028

Pan, 2013, Nanoscale, 5, 3601, 10.1039/c3nr00476g

Kong, 2011, J. Am. Chem. Soc., 133, 16414, 10.1021/ja207826q

Jin, 2018, Appl. Catal. B: Environ., 226, 53, 10.1016/j.apcatb.2017.12.008

Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105

Manikandan, 2018, J. Mater. Chem. A, 6, 15320, 10.1039/C8TA02496K