Total population size in critical branching processes in a random environment
Tóm tắt
For a critical branching process evolving in a randomenvironment and having geometric distributions of offspring sizes, we study the tail behavior of the distributions of the total size of the population and the maximal number of particles in a generation up to the moment of extinction of the process.
Tài liệu tham khảo
V. I. Afanasyev, J. Geiger, G. Kersting, and V. A. Vatutin, “Criticality for branching processes in a random environment,” Ann. Probab. 33(2), 645–673 (2005).
V. A. Vatutin and V. Vakhtel’, “Sudden extinction of a critical branching process in a random environment,” Teor. Veroyatnost. Primenen. 54(3), 417–438 (2009) [Theory Probab. Appl. 54 (3), 466–484 (2010)].
V. A. Vatutin and E. E. D’yakonova, “Critical branching processes in a random environment: The probability of extinction at a givenmoment,” Diskretn.Mat. 9(4), 100–126 (1997) [DiscreteMath. Appl. 7 (5), 469–496 (1997)].
V.M. Zolotarev, “Mellin-Stieltjes transformations in probability theory,” Teor. Veroyatnost. Primenen. 2(4), 444–469 (1957).
R. A. Doney, “Conditional limit theorems for asymptically stable random walks,” Z. Wahrsch. Verw. Gebiete 70(3), 351–360 (1985).
R. Durrett, “Conditioned limit theorems for some null recurrent Markov processes,” Ann. Probab. 6(5), 798–828 (1978).
E. Seneta, Regularly Varying Functions (Springer-Verlag, Berlin-Heidelberg-New York, 1976; Nauka, Moscow, 1985).
V. I. Afanas’ev, “On the maximum of a critical branching process in a random environment,” Diskretn.Mat. 11(2), 86–102 (1999) [DiscreteMath. Appl. 9 (3), 267–284 (1999)].
V. A. Vatutin and E. E. D’yakonova, “Branching processes in a random environment and bottlenecks in the evolution of populations,” Teor. Veroyatnost. Primenen. 51(1), 22–46 (2006) [Theory Probab. Appl. 51 (1), 189–210 (2007)].
V. A. Vatutin and V. Wachtel, “Local probabilities for random walks conditioned to stay positive,” Probab. Theory Related Fields 143(1–2), 177–217 (2009).
A. Agresti, “On the extinction times of varying and random environment branching processes,” J. Appl. Probab. 12(1), 39–46 (1975).