Characterization of copper oxidation by linear potential sweep voltammetry and UV-Visible-NIR diffuse reflectance spectroscopy

Journal of Applied Electrochemistry - Tập 21 - Trang 697-702 - 1991
M. Lenglet1, K. Kartouni1, D. Delahaye1
1Laboratoire de Physicochimie des Matériaux, INSA-Université de Rouen, Mont-Saint-Aignan Cedex, France

Tóm tắt

The aim of this study was to characterize the compounds grown on copper during oxidation at low temperature (T<573 K) in air by electrochemical and optical methods. The following oxides have been characterized: a precursor Cu x O of mixed valency character, a non stoichiometric cuprous oxide, CuO and its precursor. The mechanism of reduction has been established for layers containing CuO and a non stoichiometric copper(I) oxide. CuO is reduced before cuprous oxide. In complicated cases, it is impossible to draw conclusions from the characteristics of the electrochemical reduction (the first step of CuO reduction and the reduction of Cu(I) species specific of the non-stoichiometry are observed at the same potential). Nevertheless, the association of a non-destructive technique such as diffuse reflectance spectroscopy and electrochemical methods allows identification of the different species present in corrosion layers on copper surfaces.

Tài liệu tham khảo

H. Wieder and A. W. Czanderna,J. Phys. Chem. 66 (1962). 816. H. Neumeister and W. Jaenike,Z. Phys. Chem. B 108 (1977) 217. M. Lenglet, J. M. Machefert, J. M. Claude, B. Lefez, J. Lopitaux and A. D'Huysser,Surf. Interf. Anal. (1990), in press. J. M. Machefert, M. Lenglet, D. Blavette, A. Menand and A. D'Huysser, ‘Structure and Reactivity of Surfaces’, Elsevier Sciences Publishers B. V., Amsterdam (1989) p. 625. M. Balkanski, Y. Petroff and D. Trivich,Solid. State Commun. 5 (1967) 85. S. Brahms, J. P. Dahl and S. Nikitine,J. Phys. (1967) C3–28. P. Marksteiner, P. Blaha and K. Schwarz,Z. Phys. B 64 (1986) 119. W. Y. Ching, Y. N. Xu and K. W. Wong,Phys. Rev. B 40 (1989) 7864. J. M. Machefert, A. D'Huysser, M. Lenglet, J. Lopitaux and D. Delahaye,Mat. Res. Bull. 23 (1988) 1379. M. Lenglet, J. Arsene, J. M. Machefert, P. Leterrible and J. M. Welter,Analusis 16, (1988) 2. N. A. Tolstoi and V. A. Bonch-Bruevich,Sov. Phys. Solid State 13 (1971) 1135. J. M. Machefert, Thèse, Rouen (1990). B. Lefez and M. Lenglet, unpublished results. C. Duvury, D. J. Kenway and F. L. Weichman,J. Lum. 10 (1975) 415. R. G. Kaufman and R. T. Hawkins,J. Electrochem. Soc. 131 (1984) 385. R. G. Kaufman and R. T. Hawkins,J. Electrochem. Soc. 133 (1986) 2652. H. Wieder and A. W. Czanderna,J. Appl. Phys. 37, (1966). 184. F. H. Chapple and F. S. Stone,Proc. Brit. Ceram. Soc. 1 (1964) 45. R. H. Lambert and D. J. Trevoy,J. Electrochem. Soc. 105 (1958) 18. H. Pops and D. R. Hennessy,Wire J. 10 (1977) 50. H. Strehblow and B. Titze,Electrochim. Acta 25 (1980) 839. J. Guinement, Thèse Ingénieur Docteur, Paris VI (1985). R. L. Deutscher and R. Woods,J. Appl. Electrochem. 16 (1986) 413. M. O'Keeffe and F. S. Stone,Proc. Roy. Soc. A 267 (1962) 501. M. E. Martins and A. J. Arvia,J. Electroanal. Chem. 165 (1984) 135. M. R. Gennero de Chialvo, S. L. Marchiano and A. J. Arvia,J. Appl. Electrochem. 14, (1984) 165.