2D whole-building hygrothermal simulation analysis based on a PGD reduced order model
Tài liệu tham khảo
Harris, 2001
Berger, 2015, Factors governing the development of moisture disorders for integration into building performance simulation, J. Build. Eng., 10.1016/j.jobe.2015.04.008
Woloszyn, 2008, Tools for performance simulation of heat, air and moisture conditions of whole buildings, Build. Simul., 1, 5, 10.1007/s12273-008-8106-z
Sasic, 2007, The international building physics toolbox in simulink, Energy Build., 39, 665, 10.1016/j.enbuild.2006.10.007
Fraunhofer IBP, 2005
Tran Le, 2009, Study of moisture transfer in a double-layered wall with imperfect thermal and hydraulic contact resistances, J. Build. Perform. Simul., 2, 251, 10.1080/19401490903082459
BC Bauklimatik Dresden. Simulation program for the calculation of coupled heat, moisture, air, pollutant, and salt transport. http://www.bauklimatik-dresden.de/delphin/index.php?ala=en.
Künzel, 1995
Li, 2009, Development of HAM tool for building envelope analysis, Build. Environ., 44, 1065, 10.1016/j.buildenv.2008.07.017
Janssen, 2007, Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation, Int. J. Heat Mass Transf., 50, 1128, 10.1016/j.ijheatmasstransfer.2006.06.048
DTU. Model for Multidimensional Heat, Air and Moisture Conditions in Building Envelope Components. http://wwwx.dtu.dk/centre/bfi/md-ham.aspx.
Hens, 2002, Performance prediction for masonry walls with EIFS using calculation procedures and laboratory testing, J. Build. Phys., 25, 167
Energyplus energy simulation software. http://apps1.eere.energy.gov/buildings/energyplus/.
Derome, 1999
Barbosa, 2008, Combined simulation of central HVAC systems with a whole-building hygrothermal model, Energy Build., 40, 276, 10.1016/j.enbuild.2007.02.022
Piot, 2008, Numerical simulation aided design of an experimental protocol
Tariku, 2010, Transient model for coupled heat, air and moisture transfer through multilayered porous media, Int. J. Heat Mass Transf., 53, 3035, 10.1016/j.ijheatmasstransfer.2010.03.024
Steeman, 2010, On coupling 1D non-isothermal heat and mass transfer in porous materials with a multizone building energy simulation model, Build. Environ., 45, 865, 10.1016/j.buildenv.2009.09.006
SEL. Trnsys., 2012
Clarke, 2013, Moisture flow modelling within the ESP-r integrated building performance simulation system, J. Build. Perform. Simul., 6, 385, 10.1080/19401493.2013.777117
Spitz, 2013, Simulating combined heat and moisture transfer with EnergyPlus: an uncertainty study an comparison with experimental data
dos Santos, 2006, Simultaneous heat and moisture transfer in soils combined with building simulation, Energy Build., 38, 303, 10.1016/j.enbuild.2005.06.011
Berger, 2013, Mould growth damages due to moisture: comparing 1d and 2d heat and moisture models
Dalgliesh, 2005, Hygrothermal performance of building envelopes: uses for 2d and 1d simulation
Mortensen, 2007, Investigation of microclimate by CFD modeling of moisture interactions between air and constructions, J. Build. Phys., 30, 279, 10.1177/1744259106075233
Steeman, 2009, Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage, Build. Environ., 44, 2176, 10.1016/j.buildenv.2009.03.016
Erriguible, 2006, Simulation of convective drying of a porous medium with boundary conditions provided by CFD, Chem. Eng. Res. Des., 84, 113, 10.1205/cherd.05047
van Schijndel, 2003, Modeling and solving building physics problems with FemLab, Build. Environ., 38, 319, 10.1016/S0360-1323(02)00069-0
Berger, 2015, Proper generalised decomposition for heat and moisture multizone modelling, Energy Build., 10.1016/j.enbuild.2015.07.021
Berger, 2014, Proper generalised decomposition for solving coupled heat and moisture transfers, J. Build. Perform. Simul.
Ladeveze, 1985, Sur une famille d’algorithmes en mécanique des structures, Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l’univers, sciences de la terre, 300, 41
Ammar, 2007, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: Part II: transient simulation using space-time separated representations, J. Non-Newton. Fluid Mech., 144, 98, 10.1016/j.jnnfm.2007.03.009
Chinesta, 2011, A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Method Eng., 18, 395, 10.1007/s11831-011-9064-7
Chinesta, 2013, PGD-Based computational vademecum for efficient design, optimization and control, Arch. Comput. Method Eng., 20, 31, 10.1007/s11831-013-9080-x
Chinesta, 2013
Ammar, 2008, Circumventing curse of dimensionality in the solution of highly multidimensional models encountered in quantum mechanics using meshfree finite sums decomposition, 1
Pruliere, 2010, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition, Math. Comput. Simul., 81, 791, 10.1016/j.matcom.2010.07.015
Ammar, 2010, Non incremental strategies based on separated representations: applications in computational rheology, Commun. Math. Sci., 8, 671, 10.4310/CMS.2010.v8.n3.a4
Lamari, 2012, On the solution of the multidimensional langer's equation using the proper generalized decomposition method for modeling phase transitions, Modell. Simul. Mater. Sci. Eng., 20, 015007, 10.1088/0965-0393/20/1/015007
Niroomandi, 2012, Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models, Comput. Method Programs Biomed., 105, 1, 10.1016/j.cmpb.2010.06.012
Niroomandi, 2013, Model order reduction in hyperelasticity: a proper generalized decomposition approach, Int. J. Numer. Method Eng., 96, 129, 10.1002/nme.4531
Niroomandi, 2012, 247
Nouy, 2009, Generalized spectral decomposition for stochastic nonlinear problems, J. Comput. Phys., 228, 202, 10.1016/j.jcp.2008.09.010
Neron, 2010, Proper generalized decomposition for multiscale and multiphysics problems, Arch. Comput. Method Eng., 17, 351, 10.1007/s11831-010-9053-2
Dumon, 2011, Proper general decomposition (PGD) for the resolution of Navier–Stokes equations, J. Comput. Phys., 230, 1387, 10.1016/j.jcp.2010.11.010
Aghighi, 2013, Non-incremental transient solution of the Rayleigh–Bénard convection model by using the PGD, J. Non-Newton. Fluid Mech., 200, 65, 10.1016/j.jnnfm.2012.11.007
dos Santos, 2009, A building corner model for hygrothermal performance and mould growth risk analyses, Int. J. Heat Mass Transf., 52, 4862, 10.1016/j.ijheatmasstransfer.2009.05.026
Hensen, 1995, Modelling coupled heat and air flow: ping-pong vs onions, 253
B. Brett W., K. Tamara G., et al. Matlab Tensor Toolbox Version 2.5. 2012-01.
Mendes, 2005, A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients, Int. J. Heat Mass Transf., 48, 37, 10.1016/j.ijheatmasstransfer.2004.08.011
Bednar, 2005, Analytical solution for moisture buffering effect validation exercises for simulation tools
Rouchier, 2012, Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete, Constr. Build. Mater., 34, 54, 10.1016/j.conbuildmat.2012.02.047
Piot, 2011, Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models, Energy Build., 43, 1322, 10.1016/j.enbuild.2011.01.008
Faghri, 2010
Miranville, 2003, On the thermal behaviour of roof-mounted radiant barriers under tropical and humid climatic conditions: modelling and empirical validation, Energy Build., 35, 997, 10.1016/S0378-7788(03)00035-5
C.-E. Hagentoft. Introduction to Building Physics. Lightning Source Incorporated, 2001-01-01.
Viitanen, 2010, Moisture and biodeterioration risk of building materials and structure, J. Build. Phys., 33, 201, 10.1177/1744259109343511
Vereecken, 2011, Review of mould prediction models and their influence on mould risk evaluation, Build. Environ.
MATHWORKS. Matlab Compiler Runtime, http://www.mathworks.fr/products/compiler/mcr/.