Potentiometric determination of the chloride ion activity in cement based materials

Journal of Applied Electrochemistry - Tập 40 - Trang 561-573 - 2009
Ueli Angst1, Bernhard Elsener2, Claus K. Larsen1,3, Øystein Vennesland1
1Department of Structural Engineering, NTNU Norwegian University of Science and Technology, Trondheim, Norway
2ETH Zurich, Institute for Building Materials (IfB), ETH Hönggerberg, Zurich, Switzerland
3Norwegian Public Roads Administration, Oslo, Norway

Tóm tắt

The chloride content at the reinforcement is one of the decisive factors for the initiation and propagation of localised corrosion in concrete structures. A monitoring technique for the chloride concentration which is accurate, non-destructive and continuous would thus be highly desirable. For this reason, the performance of ion selective electrodes (ISEs) was investigated both in alkaline solutions and embedded in mortar. The Ag/AgCl electrodes used in this work showed Nernstian behaviour with a slope of –59 ± 1 mV per decade and a detection limit for chloride ions below 10−2 mol dm−3 even at pH close to 14; the selectivity coefficient for hydroxide interference was estimated at $$ k_{{{\text{Cl}}^{ - } ,{\text{OH}}^{ - } }}^{\text{pot}} \approx 4 \cdot 10^{ - 3} $$ . The Ag/AgCl membranes show good long-term stability over more than 6 months even in highly alkaline solutions as long as chloride ions are present; in the complete absence of chloride the measured potentials were affected by the pH of the solution. The sensors are, however, able to recover fast as soon as they come into contact with chloride. When using ISEs embedded in concrete, diffusion potentials between the reference electrode and the ISE, as arising e.g. from gradients in pH, significantly affect the potential measurement and present a most important error source for the application of direct potentiometry to concrete. To minimise such errors, the reference electrode has to be positioned as close to the ISE as possible.

Tài liệu tham khảo

Recommendation of RILEM TC 178-TMC (2002) Mater Struct 35:583 ASTM C-1152. Standard test method for acid-soluble chloride in mortar and concrete. American Society for Testing and Materials Geoghegan MP, Das SC (1986) UK Patent Application, No. 8429046, Taylor Woodrow Construction Limited, UK Gurusamy KN, Geoghegan MP (1990) In: 3rd International symposium on corrosion of reinforcement in concrete, Wishaw, UK. Society of chemical industry, London, pp 333–347 Molina M (1993) Zerstörungsfreie Erfassung der gelösten Chloride im Beton. Diss. ETH Nr. 10315. ETH Zürich, Switzerland Atkins CP, Scantlebury JD (1995) J Corros Sci Eng 1: Paper 2 Elsener B, Zimmermann L, Flückiger D et al (1997) In: Proceedings of RILEM international workshop on chloride penetration into concrete, Paris de Vera G, Hidalgo A, Climent MA et al (2000) J Am Ceram Soc 83:640 Hidalgo A, de Vera G, Climent MA et al (2001) J Am Ceram Soc 84:3008 Švegl F, Kalcher K, Grosse-Eschedor YJ et al (2006) Rare Met Mater Eng 35:232 Atkins CP, Scantlebury JD, Nedwell PJ et al (1996) Cem Concr Res 26:319 Climent-Llorca MA, Viqueira-Pérez E, López-Atalaya MM (1996) Cem Concr Res 26:1157 Elsener B, Zimmermann L, Böhni H (2003) Mater Corros 54:440 Montemor MF, Alves JH, Simoes AM et al (2006) Cem Concr Compos 28:233 Atkins CP, Carter MA, Scantlebury JD (2001) Cem Concr Res 31:1207 Zimmermann L (2000) Korrosionsinitiierender Chloridgehalt von Stahl in Beton. Diss. ETH Nr. 13870. ETH Zürich, Switzerland Elsener B, Angst U (2007) Corros Sci 49:4504 Schiegg Y, Böhni H (2000) Beton und Stahlbetonbau 95:92 Handbook of chemistry and physics (2007–2008), 88th edn, CRC Press, Boca Raton Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York Koryta J (1972) Anal Chim Acta 61:329 Janata J (1989) Principles of chemical sensors. Plenum Press, New York Koryta J, Štulík K (1983) Ion-selective electrodes, 2nd edn. Cambridge University Press, Cambridge Recommendations for nomenclature of ion-selective electrodes (1976) Pure Appl Chem 48:129 Umezawa Y (ed) (1990) CRC handbook of ion-selective electrodes: selectivity coefficients. CRC Press, Boca Raton Hausmann DA (1967) Mater Protect 6:19 Junsomboon J, Jakmunee J (2008) Talanta 76:365 Shreir LL, Jarman RA, Burstein GT (1994) Corrosion, vol 2, 3rd edn. Butterworth Heinemann, Oxford Dobos D (1975) Electrochemical data. A handbook for electrochemists in industry and universities. Elsevier Scientific Publishing Company, Amsterdam Biedermann G, Sillén LG (1960) Acta Chem Scand 14:717 Ives DJG, Janz GJ (1961) Reference electrodes—theory and practice. Academic Press, New York Angst U, Vennesland Ø, Myrdal R (2009) Mater Struct 42:365 Angst U, Vennesland Ø (2009) Mater Corros 60:638 Angst U, Larsen CK, Vennesland Ø et al. (2009) In: 3rd international conference on concrete repair “Concrete Solutions”. Taylor & Francis, London, pp 401–405 Tritthart J (1989) Cem Concr Res 19:586 Glass GK, Wang Y, Buenfeld NR (1996) Cem Concr Res 26:1443 Larsen CK (1998) Dr. Ing. Thesis, Report No 1998:101. Norwegian University of Science and Technology Goto S, Roy DM (1981) Cem Concr Res 11:751 Page CL, Short NR, El Tarras A (1981) Cem Concr Res 11:395 Chatterji S (1994) Cem Concr Res 24:1229 Atkinson A, Nickerson AK (1984) J Mater Sci 19:3068 Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. Centre Belge d’Etude de la Corrosion CEBELCOR Bensted J, Barnes P (eds) (2002) Structure and performance of cements, 2nd edn. Spon Press, London