Synthesis of magnesium-based binary powders with high reactivity using a coprecipitation method

Springer Science and Business Media LLC - Tập 23 - Trang 1-17 - 2021
Bong-Gu Kim1, Hyun-Hee Choi2, Jung-Hun Son2, SeungCheol Yang1,2, Yun-Ki Byeun3, Min Serk Kwon3, Asimiyu A. Tiamiyu4, Jing Zhang5, Yeon-Gil Jung1,2
1Department of Materials Convergence and System Engineering, Changwon National University, Changwon-si, Republic of Korea
2School of Materials Science and Engineering, Changwon National University, Changwon, Republic of Korea
3Electrical and Electronic Steel Research Group, Technical Research Laboratories, POSCO, Pohang-shi, Republic of Korea
4Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, USA
5Department of Mechanical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, USA

Tóm tắt

The solid-phase reaction method for preparing forsterite (Mg2SiO4) using the MgO and SiO2 powders has the disadvantages of high reaction temperature, long reaction time, and inhomogeneous reaction depending on the particle size of MgO. Therefore, MgO-based powders with a high reactivity were synthesized using a coprecipitation method with substitutional elements (Mn or Ni), and the effects of processing parameters on synthesizing MgO-based binary composition powders were investigated through the particle characteristics. The crystal structure was changed continuously with the contents and species of substitutional elements, showing the same trend as the atomistic simulation results. The MgO-based powders showed a higher reactivity than the conventional MgO powder, which could be confirmed in the particle characteristics, such as particle size and crystallinity, obtained in a short reaction time and at a relatively low temperature. The optimum composition ratio in the binary composition powder for forming the Mg2SiO4 depended on the type of substitutional element, and the reaction mechanism was identified based on the particle characteristics.

Tài liệu tham khảo

Ahn YU, Kim EJ, King HT, Hahn SH (2003) Variation of structural and optical properties of sol-gel TiO2 thin films with catalyst concentration and calcination temperature. Mater Lett 57:4660–4666. https://doi.org/10.1016/S0167-577X(03)00380-X Alizadeh R, Jamshidi E, Ebrahim HA (2007) Kinetic study of nickel oxide reduction by methane. J Eng Technol 30(8):1123–1128. https://doi.org/10.1002/ceat.200700067 Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221. https://doi.org/10.1016/0022-1902(61)80142-5 Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston Byrn SR, Xu W, Newman AW (2001) Chemical reactivity in solid-state pharmaceuticals : formulation implications. Adv Drug Deliv Rev 48:115–136. https://doi.org/10.1016/S0169-409X(01)00102-8 Caceres D, Vergara I, Gonzalez R, Chen Y (2002) Hardness and elastic modulus from nanoindentations in nominally pure and doped MgO single crystals. Philos Mag Lett 82(6):1159–1171. https://doi.org/10.1080/01418610208240022 Chen J, Yao M, Wang X (2008) Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. J Nanopart Res 10:163–171. https://doi.org/10.1007/s11051-007-9237-3 Chen L, Ye G, Wang Q, Blanpain B, Malfliet A, Guo M (2015a) Low temperature synthesis of forsterite from hydromagnesite and fumed silica mixture. Ceram Int 41:2234–2239. https://doi.org/10.1016/j.ceramint.2014.10.025 Chen L, Ye G, Zhou W, Dijkmans J, Sels B, Malfliet A, Guo M (2015b) Influence of MgO precursors on mechanically activated forsterite synthesis. Ceram Int 41:12651–12657. https://doi.org/10.1016/j.ceramint.2015.06.096 Cheng TW, Ding YC, Chiu JP (2002) A study of synthetic forsterite refractory materials using waste serpentine cutting. Miner Eng 15:271–275. https://doi.org/10.1016/S0892-6875(02)00021-3 Cheng L, Liu P, Zhao XG, Liu Q, Zhang HW (2012) Fabrication of nanopowders by high energy ball milling and low temperature sintering of Mg2SiO4 microwave dielectrics. J Alloys Compd 513:373–377. https://doi.org/10.1016/j.jallcom.2011.10.051 Da Ros S, Jones MD, Mattia D, Pinto JC, Schwaab M, Noronha FB, Kondrat SA, Clarke TC, Taylor SH (2016) Ethanol to 1,3-butadiene conversion by using ZrZn-containing MgO/SiO2 systems prepared by co-precipitation and effect of catalyst acidity modification. ChemCatChem 8:2376–2386. https://doi.org/10.1002/cctc.201600331 Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Characterization of cubic ceria-zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sci 5:1369–1376 Fathi MH, Kharaziha M (2008) Mechanically activated crystallization of phase pure nanocrystalline forsterite powders. Mater Lett 62:4306–4309. https://doi.org/10.1016/j.matlet.2008.07.015 Gaillac R, Pullumbi P, Coudert FX (2016) ELATE: an open-source online application for analysis and visualization of elastic tensors. J Phys Condens Matter 28:275201–275205. https://doi.org/10.1088/0953-8984/28/27/275201 Glasser FP, Osborn EF (1960) The ternary system MgO-MnO-SiO2. J Am Ceram Soc 43(3):132–140. https://doi.org/10.1111/j.1151-2916.1960.tb14327.x Hahn WC, Muan A (1970) Activities of the oxide components in NiO-MnO-MgO solid solutions. Mater Res Bull 5:955–964. https://doi.org/10.1016/0025-5408(70)90146-7 Hume-Rothery W (1969) Atomic theory for students of metallurgy. The Institute of Metals, London (fifth reprint) Ionic radius (2020) (https://en.wikipedia.org/wiki/Ionic_radius#:~:text=Ionic%20radii%20are%20typically%20given,into%20consideration%20the%20solvation%20shell, accessed July 2020). Khatamiana M, Irani M (2009) Preparation and characterization of nanosized ZSM-5 zeolite using kaolin and investigation of kaolin content, crystallization time and temperature changes on the size and crystallinity of products. J Iran Chem Soc 6(1):187–194. https://doi.org/10.1007/BF03246519 Lee B, Kang P, Lee KH, Cho J, Nam W, Lee WK, Hur NH (2013) Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Lett 54:1384–1388. https://doi.org/10.1016/j.tetlet.2012.12.106 Li JG, Ikegami T, Wang Y, Mori T (2002) Reactive ceria nanopowders via carbonate precipitation. J Am Ceram Soc 85(9):2376–2378. https://doi.org/10.1111/j.1151-2916.2002.tb00465.x Li J, Sun X, Liu S, Li X, Li JG, Huo D (2015) A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceram Int 41:3283–3287. https://doi.org/10.1016/j.ceramint.2014.10.076 Liu TS, Stokes RJ, Li CH (1964) Fabrication and plastic behavior of single-crystal MgO-NiO and MO-MnO solid-solution alloys. J Am Ceram Soc 47(6):276–279. https://doi.org/10.1111/j.1151-2916.1964.tb14415.x Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244. https://doi.org/10.1002/anie.200602866 Malecka B, Ciesla ED, Olszewski PK (2003) Kinetics of thermal decomposition of manganese(II) oxalate. J Therm Anal Calorim 74:485–490. https://doi.org/10.1023/B:JTAN.0000005184.81064.f6 E. Matijevic, W.P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium and cerium(III), J. Colloid Interface Sci. 118(2) (1987) 506–523. 10.1016/0021-9797(87)90486-3 Mishra D, Anand S, Panda RK, Das RP (2000) Hydrothermal preparation and characterization of boehmites. Mater Lett 42:38–45. https://doi.org/10.1016/S0167-577X(99)00156-1 Mitchell MBD, Jackson D, James PF (1998) Preparation and characterization of forsterite (Mg2SiO4) aerogels. J Non-Cryst Solids 225:125–129. https://doi.org/10.1016/S0022-3093(98)00017-9 Moon JH, Awano M, Takagi H, Fujishiro Y (1999) Synthesis of nanocrystalline manganese oxide powders: influence of hydrogen peroxide on particle characteristics. J Mater Res 14(12):4594–4601. https://doi.org/10.1557/JMR.1999.0622 Ni S, Chou L, Chang J (2007) Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram Int 33:83–88. https://doi.org/10.1016/j.matlet.2007.05.078 Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. https://doi.org/10.1103/PhysRev.56.978 Pedone A, Malavasi G, Menziani MC, Cormack AN, Segre U (2006) A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J Phys Chem B 110(24):11780–11795. https://doi.org/10.1021/jp0611018 Pilarska A, Wysokowski M, Markiewicz E, Jesionowski T (2013a) Synthesis of magnesium hydroxide and its calcinates by a precipitation method with the use of magnesium sulfate and poly(ethylene glycols). Powder Technol 235:148–157. https://doi.org/10.1016/j.powtec.2012.10.008 Pilarska A, Nowacka M, Pilarski K, Paukszta D, Klapiszewski L, Jesionowski T (2013b) Preparation and characterisation of unmodified and poly(ethylene glycol) grafted magnesium hydroxide. Physicochem. Probl. Miner. Process. 49(2):701–712. https://doi.org/10.5277/ppmp130228 Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039 Rezaei M, Khajenoori M, Nematollhi B (2011) Preparation of nanocrystalline MgO by surfactant assisted precipitation method. Mater Res Bull 46:1632–1637. https://doi.org/10.1016/j.materresbull.2011.06.007 Saberi A, Alinejad B, Negahdari Z, Kazemi F, Almasi A (2007) A novel method to low temperature synthesis of nanocrystalline forsterite. Mater Res Bull 42:666–673. https://doi.org/10.1016/j.materresbull.2006.07.020 Said MZ (1998) Effect of gadolinium substitutions on the structure and electrical conductivity of Ni-ferrite. Mater Lett 34:305–307. https://doi.org/10.1016/S0167-577X(97)00201-2 Sembiring S, Ritanto A, Simanjuntak W, Situmeang R (2017) Effect of MgO-SiO2 ratio on the forsterite (Mg2SiO4) precursors characteristics derived from amorphous rice husk silica. Orient J Chem 33(4):1828–1836. https://doi.org/10.13005/ojc/330427 Son SG, Lee JH, Lee SH, Kim YD (2009) Low temperature synthesis of forsterite powders by the geopolymer technique. J Korean Ceram Soc 46(3):242–248. https://doi.org/10.4191/KCERS.2009.46.3.242 Song KX, Chen XM (2008) Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Mater Lett 62:520–522 Tangeman JA, Phillips BL, Navrotsky A, Weber JKR (2001) Vitreous forsterite (Mg2SiO4): synthesis, structure, and thermochemistry. Geophys Res Lett 28(13):2517–2520. https://doi.org/10.1029/2000GL012222 Tavangarian F, Emadi R (2010) Mechanochemical synthesis of single phase nanocrystalline forsterite powder. Inter J Mod Phys B 24(3):343–350. https://doi.org/10.1142/S0217979210053987 Thanh NTK, Maclean N (2014) Mechanisms of nucleation and growth of nanoparticles in solution. J Am Chem Soc 114:7610–7630. https://doi.org/10.1021/cr400544s Tsai MT (2003) Preparation and crystallization of forsterite fibrous gels. J Eur Ceram Soc 23(8):1283–1291. https://doi.org/10.1016/S0955-2219(02)00305-9 Watchtel E, Lubomirsky I (2011) The elastic modulus of pure and doped ceria. Scr Mater 65:112–117. https://doi.org/10.1016/j.scriptamat.2010.09.021 West AR (2014) Solid state chemistry and its applications, 2nd edn. Wiley, New York Wong B, Pask JA (1979) Experimental analysis of sintering of MgO compacts. J Am Ceram Soc 62(3-4):141–146. https://doi.org/10.1111/j.1151-2916.1979.tb19040.x