Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina

International Journal of Thermal Sciences - Tập 91 - Trang 76-82 - 2015
Wei Yu1, Huaqing Xie1, Luqiao Yin2, Junchang Zhao3, Ligang Xia3, Lifei Chen1
1College of Engineering, School of Environmental and Materials Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China
2School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
3Shanghai Yueda New Materials Science and Technology Ltd., Shanghai 201209, China

Tài liệu tham khảo

Leong, 2003, Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance, Carbon, 41, 2459, 10.1016/S0008-6223(03)00247-1 Shaikh, 2007, The effect of a CNT interface on the thermal resistance of contacting surfaces, Carbon, 45, 695, 10.1016/j.carbon.2006.12.007 Gaier, 2003, The electrical and thermal conductivity of woven pristine and intercalated graphite fiber-polymer composites, Carbon, 41, 2187, 10.1016/S0008-6223(03)00238-0 Viswanath, 2000, Thermal performance challenges from silicone to systems, Intel. Technol. J., 1 Gwinn, 2003, Performance and testing of thermal interface materials, Microelectron. J., 34, 215, 10.1016/S0026-2692(02)00191-X Sim, 2005, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochim. Acta, 430, 155, 10.1016/j.tca.2004.12.024 Chen, 2013, Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes, Appl. Surf. Sci., 283, 525, 10.1016/j.apsusc.2013.06.139 Xu, 2001, Thermally conducting aluminum nitride polymer-matrix composites, Compos. Part A Appl. Sci. Manuf., 32, 1749, 10.1016/S1359-835X(01)00023-9 Zhou, 2008, Thermal properties of heat conductive silicone rubber filled with hybrid fillers, J. Compos. Mater., 42, 173, 10.1177/0021998307086184 Kemaloglu, 2010, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites, Thermochim. Acta, 499, 40, 10.1016/j.tca.2009.10.020 Chung, 2001, Thermal interface materials, J. Mater. Eng. Perform., 10, 56, 10.1361/105994901770345358 Becker, 2005, Thermal conductivity in advanced chips: emerging generation of thermal greases offers advantages, Adv. Packag., 14, 14 Sarvar, 2006, Thermal interface materials-A review of the state of the art, vol. 2, 1292 Zhou, 2007, Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber, J. Appl. Polym. Sci., 104, 1312, 10.1002/app.25789 Zhou, 2007, Thermally conductive silicone rubber reinforced with boron nitride particle, Polym. Compos., 28, 23, 10.1002/pc.20296 Wang, 2003, Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease, J. Appl. Polym. Sci., 89, 2397, 10.1002/app.12363 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Rao, 2009, Graphene: the new two-dimensional nanomaterial, Angew. Chem. Int. Ed., 48, 7752, 10.1002/anie.200901678 Huang, 2011, Graphene-based materials: synthesis, characterization, properties, and applications, Small, 7, 1876, 10.1002/smll.201002009 Bolotin, 2008, Ultrahigh electron mobility in suspended grapheme, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024 Balandin, 2008, Superior thermal conductivity of single-layer grapheme, Nano Lett., 8, 902, 10.1021/nl0731872 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer grapheme, Science, 321, 385, 10.1126/science.1157996 Huang, 2012, Graphene-based composites, Chem. Soc. Rev., 41, 666, 10.1039/C1CS15078B Yu, 2007, Graphite nanoplatelet-epoxy composite thermal interface materials, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s Shahil, 2012, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett., 12, 861, 10.1021/nl203906r Yu, 2014, Graphene based silicone thermal greases, Phys. Lett. A, 378, 207, 10.1016/j.physleta.2013.10.017 Goli, 2014, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources, 248, 37, 10.1016/j.jpowsour.2013.08.135 Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064 Weber, 2003, Thermally conductive nylon 6, 6 and polycarbonate based resins. I. Synergistic effects of carbon fillers, J. Appl. Polym. Sci., 88, 112, 10.1002/app.11571 Lee, 2006, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. Part A Appl S, 37, 727, 10.1016/j.compositesa.2005.07.006 Pak, 2012, Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers, Carbon, 50, 4830, 10.1016/j.carbon.2012.06.009 Yu, 2008, Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites, Adv. Mater., 20, 4740, 10.1002/adma.200800401 Goyal, 2012, Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials, Appl. Phys. Lett., 100, 073113, 10.1063/1.3687173 Marcano, 2010, Improved synthesis of graphene oxide, ACS Nano, 4, 4806, 10.1021/nn1006368 Potts, 2011, Graphene-based polymer nanocomposites, Polymer, 52, 5, 10.1016/j.polymer.2010.11.042 Zhou, 2008, Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber, Polym. Eng. Sci., 48, 1381, 10.1002/pen.21113 Cumberland, 1987, Handbook of Powder Technology, vol. VI Stankovich, 2006, Graphene-based composite materials, Nature, 442, 282, 10.1038/nature04969 Shahil, 2012, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials, Solid State Commun., 152, 1331, 10.1016/j.ssc.2012.04.034 Hasselman, 1987, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 21, 508, 10.1177/002199838702100602 Davis, 1995, Thermal conductivity of metal-matrix composites, J. Appl. Phys., 77, 4954, 10.1063/1.359302 Nan, 1997, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys., 81, 6692, 10.1063/1.365209 Davis, 1975, Transport processes in composite media, J. Am. Ceram. Soc., 58, 446, 10.1111/j.1151-2916.1975.tb19020.x Every, 1992, The effect of particle size on the thermal conductivity of ZnS/diamond composites, Acta Metall. Mater., 40, 123, 10.1016/0956-7151(92)90205-S Kirkpatrick, 1973, Percolation and conduction, Rev. Mod. Phys., 45, 574, 10.1103/RevModPhys.45.574 Phelan, 1998, Effective thermal conductivity of a thin, randomly oriented composite material, J. Heat Transfer, 120, 971, 10.1115/1.2825917 Hill, 2002, Thermal conductivity of platelet-filled polymer composites, J. Am. Ceram. Soc., 85, 851, 10.1111/j.1151-2916.2002.tb00183.x Landauer, 1978, Electrical conductivity in inhomogeneous media, AIP Conf. Proc., 40, 2, 10.1063/1.31150 Lin, 2009, Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials, Carbon, 47, 295, 10.1016/j.carbon.2008.10.011 Hung, 2006, Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites, Appl. Phys. Lett., 89, 023117, 10.1063/1.2221874 Yang, 2011, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49, 793, 10.1016/j.carbon.2010.10.014 Gwaily, 1995, Thermal properties of ceramic-loaded conductive butyl rubber composites, Polym. Degrad. Stab., 47, 391, 10.1016/0141-3910(95)00004-6